

Mastère Spécialisé Design des Matériaux & Structures

Vendredi 4 mars 2016

FAISABILITÉ DE RECONSTRUCTION DE MICROSTRUCTURE D'ALUMINURES DE TITANE PAR DES TECHNIQUES D'IMAGERIE 3D EN VUE DE RÉALISATION D'ESSAIS IN-SITU

Anouk Briane^{1,2}

Encadrement : Henry Proudhon¹, Jérôme Crépin¹, Lionel Marcin²

¹Centre des Matériaux, MINES ParisTech, UMR CNRS 7633 ²SafranTech, 78117 Châteaufort

Plan de l'exposé

Contexte de recherche

- Les Aluminures de Titane
 - →Généralités
 - →Caractéristiques cristallographiques
 - →Propriétés thermomécaniques
- *La caractérisation 3D des matériaux polycristallins
 - \rightarrow Tomographie aux rayons X
 - \rightarrow Tomographie par Contraste de Diffraction
- Expériences préliminaires
 - \rightarrow Découpe des éprouvettes
 - →Analyse cristallographique
- Perspectives pour le projet
 - \rightarrow Planning du semestre industriel
 - →Difficultés attendues lors de la reconstruction

Tomographie par Contraste de Diffraction

Technique récente

→Premier article publié en 2008 par W. Ludwig (laboratoire MATEIS, INSA-Lyon)

Journal of Applied Crystallography	X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping
Received 28 June 2007 Accepted 16 January 2008	of polycrystals.

Développement à l'ESRF (European Synchrotron Radiation Facility) avec le laboratoire MATEIS (INSA-Lyon)

→Installation, équipement (Reischig, 2013)

 \rightarrow Algorithme de reconstruction (Vigano, 2016)

✤ Depuis 2015

→ Développé industriellement par Zeiss

Découverts dans les années 1950

Recherches depuis une vingtaine d'années pour les industries aéronautiques et automobiles

→ Aubes de turbine basse pression des moteurs LEAP de la jointventure Snecma – General Electric

Aube de turbine TiAl

Moteur LEAP

Les Aluminures de Titane par Contraste de Diffraction

- ✤Aucune publication sur le TiAl
- Matériaux déjà étudiés

Alliage de Titane (*Ludwig*, et al. 2011)

Acier (Kostenko, et al., 2012)

Alliage d'Aluminium (*Renversade, et al.* 2016)

Neige (Rolland du Roscoat, et al. 2011)

Généralités

- Alliage intermétallique
 - → TiAl, Ti₃Al
 - → Propriétés différentes des métaux purs
- ✤ Fabrication
 - → Métallurgie des poudres
 - → Déformation à chaud : extrusion, forgeage
 - \rightarrow Voie fonderie à partir de lingots
 - \rightarrow Usinage direct

Généralités

FONDERIE MDP

Comparaison de microstructures d'un même alliage TiAl obtenu par fonderie et métallurgie des poudres (*Héripré, 2006*)

6/20

- ✤ Diagramme de phases
 - → Quatre phases en présence
 - β-TiAl : cubique centrée –
 désordonnée ou cubique simple
 ordonnée
 - α-Ti₃Al : hexagonale compacte désordonnée
 - α₂-Ti₃Al : hexagonale compacte
 ordonnée
 - γ-TiAl : quadratique base C

- ✤ Diagramme de phases
 - → Quatre phases en présence
 - β-TiAl : cubique centrée désordonnée ou cubique simple – ordonnée
 - α-Ti₃Al : hexagonale compacte désordonnée
 - α₂-Ti₃Al : hexagonale compacte
 ordonnée
 - γ-TiAl : quadratique base C centrée ordonnée

- ✤ Diagramme de phases
 - → Quatre phases en présence
 - β-TiAl : cubique centrée désordonnée ou cubique simple – ordonnée
 - α-Ti₃Al : hexagonale compacte désordonnée
 - $\triangleright \alpha_2$ -Ti₃Al : hexagonale compacte - ordonnée
 - γ-TiAl : quadratique base C centrée joint rdonnée

- ✤ Diagramme de phases
 - → Quatre phases en présence
 - β-TiAl : cubique centrée désordonnée ou cubique simple – ordonnée
 - α-Ti₃Al : hexagonale compacte désordonnée
 - α₂-Ti₃Al : hexagonale compacte
 ordonnée
 - γ-TiAl : quadratique base C centrée (c/a=1,02) - ordonnée

Caractéristiques cristallographiques

Microstructures observables au sein d'une aube de turbine
 Dépend du procédé d'élaboration et des traitements thermiques

Diagramme d'équilibre binaire TiAl (Thomas, 2011) Microstructures des TiAl, ONERA (Héripré, 2006)

Caractéristiques cristallographiques

✤Microstructures observables au sein d'une aube de turbine

 \rightarrow Maintien isotherme au-dessus de la température de transus de α

 \rightarrow Grains monophasés γ aux joints de grains lamellaires

 \rightarrow Taille des grains de l'ordre de 100 µm

Caractéristiques cristallographiques

Microstructures observables au sein d'une aube de turbine

 \rightarrow **Recuit** dans le domaine α + γ

 \rightarrow Grains lamellaires α_2 et γ , grains monophasés γ

 \rightarrow Taille des grains de 10 à 20 µm

Caractéristiques cristallographiques

Microstructures observables au sein d'une aube de turbine

 \rightarrow Grains γ équiaxes, possibilité de précipités α_2 aux joints de grains et de grains γ maclés

 \rightarrow Taille des grains de 10 à 50 µm

Caractéristiques cristallographiques

Microstructures observables au sein d'une aube de turbine

Microstructures des TiAl, ONERA (Héripré, 2006)

➔Nécessité de développer des techniques pour connaître la microstructure au cœur du matériau

Propriétés Thermomécaniques

Comparaison d'alliages utilisés dans l'aéronautique

Propriétés	Alliages TiAl			Superalliance Ni
	Ti ₃ Al-α ₂	ΤΙΑΙ-γ	Alliuges II	Superalitages Ni
Densité	4,1 - 4,7	3,7 – 3,9	4,5	7,9 – 8,5
Module de Young (GPa)	110 – 145	160 – 180	95 – 115	200
Limite d'élasticité (MPa)	700-990	350 – 600	380 – 1150	800 – 1200
Ductilité (%)	2-10	1-4	10 – 25	3 – 25
Ductilité HT (%/°C)	10 – 20 @660	10 – 60 <i>@870</i>	12 – 50 <i>@600</i>	20 – 80 @870
Ténacité (MPa√m)	13-30	12 – 35	12 – 50	30 – 100
T max d'utilisation (°C)	870	870	600	850

- → T ambiante : Propriétés mécaniques du même ordre de grandeur que les autres alliages sauf ductilité
- → T > 600°C : Bonne ductilité
- → Faible densité
- → T max d'utilisation élevée

Propriétés Thermomécaniques

Influence de la microstructure

Propriétés :

- RF : Résistance au Fluage
- TG : Taille de Grains
- A: Allongement
- R : Résilience
- RT : Résistance à la Traction
- T : Ténacité

Phases :

- PM γ : Monophasée γ
- D : Duplex
- PL : Presque Lamellaire
- TL : Totalement Lamellaire

Microstructures Influence de la microstructure sur les propriétés mécaniques des alliages TiAl (*Kim, et al., 1991*)

- → Microstructure lamellaire : ténacité élevée, faible résistance à la traction
- → Microstructure monophasée : ténacité faible, résistance à la traction élevée

➔ Connaissance de la microstructure nécessaire

Tomographie aux rayons X

- Tomographie : du grec tomos « couper » et grapho « écrire»
 - →Technique basée sur la reconstruction d'un objet en 3D par des coupes
 - →Destructive : coupes sériées EBSD
 - →Non-destructive : utilisation de rayons X
- Tomographie aux rayons X
 - → Interaction entre le faisceau de rayons X et l'objet
 - → Détection des rayonnements diffractés, transmis, ...
 - → Reconstruction 3D à l'aide d'algorithmes à partir des images détectées
- En science des matériaux, plusieurs techniques
 - Différences de composition de phases (tomographie par contraste d'absorption)
 - → Détection des **contours** (tomographie par **contraste de phase**)
 - → Orientation cristallographique des grains (tomographie par contraste de diffraction)

Tomographie par contraste de diffraction

- Principe et montage expérimental
 - → Mode d'imagerie en champ plein
 - → Echantillon sur une platine tournante, scan sur 360°, pas de 0,05°
 - → Condition de Bragg respectée : diffraction pour ω et ω +180° correspondant à la diffraction des plans (*hkl*) et ($\bar{h}\bar{k}\bar{l}$)
 - → Pour un grain, 4 spots de diffraction par famille de plan (A1-B1, A2-B2)

Tomographie par contraste de diffraction

Traitement des données pour la reconstruction 3D à l'aide du code MATLAB DCT

- \rightarrow Prétraitement des images par segmentation des spots
- →Correspondance des paires de Friedel à l'aide de la symétrie axiale
- \rightarrow Indexation des grains
- →Reconstruction individuelle de la forme des grains par un algorithme de reconstruction algébrique
- \rightarrow Assemblage des grains dans le volume 3D

Reconstruction d'image 3D d'un polycristal (neige), (*Rolland de Roscoat, 2011*) La Caractérisation 3D des Matériaux Polycristallins

Limites de la méthode

Difficultés de reconstruction

- →Géométrie et taille des grains
- →Gradients d'orientation ou de déformation élastique

Variation de l'apparence d'un spot de diffraction pour des intervalles de rotation de 0,05° (Ludwig, 2010)

Améliorations à venir

→Algorithmes de reconstruction

→Moyens techniques (augmentation du nombre de pixels des détecteurs)

Expériences Préliminaires

Découpe des éprouvettes

Matériaux envoyés par Snecma

 \rightarrow Trois microstructures différentes : presque lamellaire, duplex et complètement γ

Plan de découpe des éprouvettes dans les cylindres

Expériences Préliminaires

Analyse cristallographique

- Effectuées par Electron Back Scatter Diffraction (EBSD)
 - →Reconstruction de l'orientation cristallographique des grains d'une microstructure en 2D
- Préparation de l'échantillon
 - →Microstructure complètement lamellaire
 - →Polissage mécanique et électrolytique
 - \rightarrow 2 zones d'analyse

Perspectives pour le projet

Planning du semestre industriel

- 1. Préparation des éprouvettes pour la tomographie
 - → Polissage et analyses EBSD
- Campagne d'expériences à l'ESRF (24 heures)
 → Collecte des données
- 3. Reconstruction des microstructures à l'aide du code DCT
- 4. Génération de maillage à partir du polycristal reconstruit pour des simulations numériques

Perspective pour le projet

Difficultés attendues lors de la reconstruction

- Technique de tomographie adaptée pour des grains modèles
 - \rightarrow Taille de grain : 20 à 200 µm
 - → Géométrie du grain : convexe, simple
 - → Joint de grain : bien défini
 - → Pas ou peu de défaut
- Reconstruction des microstructures lamellaires
 - \rightarrow Taille de grain trop grande pour la technique (> à 500 µm)
 - ➔ Aide de la tomographie par contraste de phase
- Reconstruction des défauts
 - → Grains maclés : défaut d'empilement non intégré au code

→ Intégration de la cristallographie des macles au code MATLAB

Merci de votre attention !