

Etude du comportement mécanique à haute température d'alliages d'aluminium de fonderie utilisés pour la fabrication de culasses

Anass ASSADIKI

Encadrants :

Georges Cailletaud Vladimir Esin Rémi Martinez Centre des matériaux MINES ParisTech Centre des matériaux MINES ParisTech MONTUPET S.A

Vendredi 4 Mars 2016

Industrie automobile

- Allègement des véhicules
- Augmentation du rendement des moteurs thermiques

- Emploi d'alliages légers
- Fonctionnement à plus haute température

Introduction

Alliages d'aluminium de fonderie (1/2)

• Alliages d'aluminium de fonderie Al-Si hypo-eutectiques

Diagramme binaire Al-Si

- Baisse du point de fusion
- Propriétés de fonderie (dilatation en solidification)
- Résistance à l'usure

CENTRE DES MATERIAUX

MINES ParisTech

MONTUPET

Alliages d'aluminium de fonderie (2/2)

Microstructure typique d'un alliage Al-Si-Cu-Mg de fonderie

MINES +

Traitements thermiques

- Propriétés mécaniques médiocres dans l'état brut de fonderie
- Pièces livrées dans des états traités thermiquement

Gamme de traitement thermique d'alliages d'aluminium

Séquence de précipitation (1/2)

Phases de transition métastables

- Possible d'avoir plus d'une phase de transition
- Les phases de transition fines et finement espacées sont plus efficace au durcissement par précipitation
- Augmentation de la taille des précipités et la distance inter-précipités se traduit par la perte des propriétés mécaniques

Séquence de précipitation (2/2)

Phases contribuant au durcissement par précipitation

Al-Cu					Al-Si-Mg				
Phase	Cristallographie		Cohérence		Phase		Cristallographie		Cohérence
Zones GP	Amas d'a	tomes	С	ohérent	Zones C	SP	Amas	s d'atomes	Cohérent
θ"-Al ₂ Cu	Quadra (a=0,404 nm, c	tique =0,769 nm)	Sem	i-cohérent	β''-Mg ₂	Si	Monoclinique (a=1.516 nm, b=0.405 nm, $c=0.674$ nm, $\beta=105.3^{\circ}$)		Semi-cohérent
θ'- Al ₂ Cu	Quadra (a=0,407 nm, c (a=0.404 nm, c	tique =0,581 nm) =0.580 nm)	Sem	i-cohérent	β'- Mg ₂	Si	Hexagonal (a=0.705 nm, c=0.405 nm)		Semi-cohérent
θ-Al ₂ Cu	Quadrat (a=0.606 nm, c	tique =0.487 nm)	Inc	cohérent	β- Mg ₂ S	5i	Cubique à faces centrées (a=0.639)		Incohérent
		Al-Si-C			Cu-Mg				
		Phase Zone GP Q'- Al ₅ Cu ₂ Mg ₈ Si ₆ Q- Al ₅ Cu ₂ Mg ₈ Si ₆		Cristallographie		Cohérence Cohérent			
				Amas d'atomes					
				Hexag (a = 1.04, c	onal = 0.405)	Semi-cohérent			
				Hexagonal (a = 1.03, c = 0.4505)		Incohérent			
		• .	1 1		. `	1			

- Coexistence de plusieurs systèmes de durcissement
- Séquences de précipitation complexes

- Eléments d'alliages principaux : silicium, cuivre, magnésium
- Alliages de première fusion

Alliage	Si	Cu	Mg	Ti	Ni	Sr	Fe	Impuretés
AS10U05G03	~10	~0,5	~0,3	~0,15	max 0,05	~0,01	max 0,15	max 0,1
AS7U05G03	~7	~0,5	~0,3	~0,15	max 0,05	~0,01	max 0,2	max 0,1

Tableau des compositions des alliages de base (%massique)

Alliages de base

CENTREDESMATERIAUX P.MFOURT MINES ParisTech

MONTUPET

Revue de la littérature : phases stables dans les alliages type AS7 et AS10

Précurseurs responsables du

durcissement par précipitation

- Phases du système Al-Si-Cu-Mg
 - Solution solide α à base d'aluminium
 - Silicium 🖌
 - θ -Al₂Cu
 - β-Mg₂Si
 - Q- $Al_5Cu_2Mg_8Si_6$
- Intermétalliques à base de Fe
 - α -Al₁₅Si₂(Fe, Mn)₄
 - β -Al₉Fe₂Si₂

Phases fragiles – dégradent les propriétés mécaniques (Atténuation par modification de la morphologie)

[Hwang et al. 2009]

Alliage de base	Elément d'addition	Référence
Al-10.8Si-2.25Cu-0.3Mg	Sn; Pb; In	[Mohamed et al. 2009]
Al-7Si-0.3Mg	Sc	[Pandee et al. 2014]
Al-7Si-1Cu-0.5Mg	Ti; V; Zr	[Shana et al. 2015]
Al-9Si-1.8Cu-0.45Mg	Zr; Ni	[Mohamed et al. 2013]
Al-7Si-0.35Mg	Ni; V	[Casari et al. 2014]

- Résultats principaux:
 - Précipitation de nouvelles phases
 - Modification de la morphologie de certaines phases
 - Légères améliorations du comportement mécanique
- Démarche essai-erreur consommatrice de temps/argent, sans garantie

I.C.M.E

Integrated Computational Materials Engineering

Modèles Multi-échelles Relation étroite avec les outils de calculs

Réduction des cycles de développement de nouveaux matériaux

Démarche – I.C.M.E (2/3)

CENTRE DESMATERIAUX P.MFOURT MINES ParisTech

15

Résultats préliminaires - Thermo-Calc (1/4)

CENTREDESMATERIAUX

- Calcul d'équilibre avec les compositions des alliages de base
- **Objectif** : validation de la représentativité de la base de données TCAL4 de Thermo-Calc

Résultats préliminaires - Thermo-Calc (2/4)

Barlas (2004), Ludwig (2013)

- Dissolution de la **phase Q: 421,5 °C**
- Dissolution du Silicium: 577,9 °C
- Dissolution de β-Mg₂Si: 441,3 °C
- Dissolution de **β-Al₉Fe₂Si₂: 567,2 °C**

Résultats préliminaires - Thermo-Calc (3/4)

Shabestari (2006), Ovono (2004)

- Dissolution de **θ-Al₂Cu: 495 °C**
- Dissolution de α -Al₁₅Si₂(Fe, Mn)₄: 567,2 °C

CENTRE DES MATERIAUX

MINES + ParisTech

MONTUPET

- Prédiction de toutes les phases observées expérimentalement et rapportées dans la littérature
- Domaines de stabilité des phases proches de ceux prévus par des expériences de DSC (Differential Scanning Calorimetry)
- Validation de la représentativité de la base de données Thermo-Calc TCAL4

Perspectives – Poursuite du travail

Calculs Thermo-Calc sur des compositions modifiées

- Contrôle de la composition
- Exécution de traitements thermiques
- Vieillissement à différentes conditions temps/température

Caractérisation microstructurale et mécanique

- Observations MEB/MET
- Essais mécaniques de traction, fatigue LCF

Merci de votre attention

Franchissement des précipités

Phases métastables Al-Cu

Séquence de précipitation

• La phase stable est plus stable thermodynamiquement mais elle précipite pas en premier

• Plus faible barrière de germination pour les phases de transition vu leur cohérence avec la matrice

Pic de dureté

