

Etude du comportement mécanique à haute température d'alliages d'aluminium de fonderie utilisés pour la fabrication de culasses

Anass ASSADIKI

Encadrants:

Georges Cailletaud Centre des matériaux MINES ParisTech

Vladimir Esin Centre des matériaux MINES ParisTech

Rémi Martinez MONTUPET S.A

Introduction

Contexte Ecologique et environnemental actuel

Baisse des niveaux de pollution

Industrie automobile

- Allègement des véhicules
- Augmentation du rendement des moteurs thermiques

- Emploi d'alliages légers
- Fonctionnement à plus haute température

Introduction

Légèreté Conductivité thermique

Propriétés

 $Pr\'{e}cipit\'{e}s~\theta'$ semi-cohérents

Alliages d'aluminium de fonderie

Augmentation des Températures de service

Vieillissement accéléré

Bas point de fusion

Coulabilité Usinabilité

Perte des propriétés mécaniques

 $Pr\'{e}cipit\'{e}s~\theta~incoh\'{e}rents$

(champ clair)

(champ sombre)

Objectif

Alliages d'aluminium de fonderie (1/2)

- Baisse du point de fusion
- Propriétés de fonderie (dilatation en solidification)
- Résistance à l'usure

Alliages d'aluminium de fonderie (2/2)

Microstructure typique d'un alliage Al-Si-Cu-Mg de fonderie

[Viet-Duc et al. 2015]

Traitements thermiques

- Propriétés mécaniques médiocres dans l'état brut de fonderie
- Pièces livrées dans des états traités thermiquement

Gamme de traitement thermique d'alliages d'aluminium

[Shackelford, J.F.1992.]

Séquence de précipitation (1/2)

- Possible d'avoir plus d'une phase de transition
 Les phases de transition fines et finement espacées sont plus efficace au durcissement par précipitation
- Augmentation de la taille des précipités et la distance inter-précipités se traduit par la perte des propriétés mécaniques

Séquence de précipitation (2/2)

Phases contribuant au durcissement par précipitation

	Al-Cu			Al-Si-Mg	
Phase	Cristallographie	Cohérence	Phase	Cristallographie	Cohérence
Zones GP	Amas d'atomes	Cohérent	Zones GP	Amas d'atomes	Cohérent
θ"-Al ₂ Cu	Quadratique (a=0,404 nm, c=0,769 nm)	Semi-cohérent	β'' -Mg ₂ Si	Monoclinique (a=1.516 nm, b=0.405 nm, c=0.674 nm, β=105.3°)	Semi-cohérent
θ'-Al ₂ Cu	Quadratique (a=0,407 nm, c=0,581 nm) (a=0.404 nm, c=0.580 nm)	Semi-cohérent	β'- Mg ₂ Si	Hexagonal (a=0.705 nm, c=0.405 nm)	Semi-cohérent
θ-Al ₂ Cu	Quadratique (a=0.606 nm, c=0.487 nm)	Incohérent	β- Mg ₂ Si	Cubique à faces centrées (a=0.639)	Incohérent

AI-Si-Cu-Mg				
Phase	Cristallographie	Cohérence		
Zone GP	Amas d'atomes	Cohérent		
Q'- Al ₅ Cu ₂ Mg ₈ Si ₆	Hexagonal $(a = 1.04, c = 0.405)$	Semi-cohérent		
Q- Al ₅ Cu ₂ Mg ₈ Si ₆	Hexagonal (a = 1.03, c = 0.4505)	Incohérent		

- Coexistence de plusieurs systèmes de durcissement
- Séquences de précipitation complexes

Alliages de base

- Eléments d'alliages principaux : silicium, cuivre, magnésium
- Alliages de première fusion

Alliage	Si	Cu	Mg	Ti	Ni	Sr	Fe	Impuretés
AS10U05G03	~10	~0,5	~0,3	~0,15	max 0,05	~0,01	max 0,15	max 0,1
AS7U05G03	~7	~0,5	~0,3	~0,15	max 0,05	~0,01	max 0,2	max 0,1

Tableau des compositions des alliages de base (%massique)

Alliages de base

Revue de la littérature : phases stables dans les alliages type AS7 et AS10

- Phases du système Al-Si-Cu-Mg
 - Solution solide α à base d'aluminium
 - Silicium •
 - Θ -Al₂Cu
 - β -Mg₂Si
 - Q-Al₅Cu₂Mg₈Si₆

Précurseurs responsables du durcissement par précipitation

- Intermétalliques à base de Fe
 - α -Al₁₅Si₂(Fe, Mn)₄
 - β -Al₉Fe₂Si₂

Phases fragiles – dégradent les propriétés mécaniques (Atténuation par modification de la morphologie)

Travaux Antérieurs

Alliage de base	Elément d'addition	Référence
Al-10.8Si-2.25Cu-0.3Mg	Sn; Pb; In	[Mohamed et al. 2009]
Al-7Si-0.3Mg	Sc	[Pandee et al. 2014]
Al-7Si-1Cu-0.5Mg	Ti; V; Zr	[Shana et al. 2015]
Al-9Si-1.8Cu-0.45Mg	Zr; Ni	[Mohamed et al. 2013]
Al-7Si-0.35Mg	Ni; V	[Casari et al. 2014]

- Résultats principaux:
 - Précipitation de nouvelles phases
 - Modification de la morphologie de certaines phases
 - Légères améliorations du comportement mécanique
- Démarche essai-erreur consommatrice de temps/argent, sans garantie

Démarche - I.C.M.E (1/3)

I.C.M.E

Integrated Computational Materials Engineering

Modèles Multi-échelles Relation étroite avec les outils de calculs

Réduction des cycles de développement de nouveaux matériaux

Propriétés

Démarche - I.C.M.E (2/3)

Démarche - CALPHAD (3/3)

CALPHAD CALculation of PHAse Diagrams

Données + Modèles expérimentales + numériques

Minimisation de l'énergie de Gibbs

Prévision des domaines de stabilité des phases

Résultats préliminaires - Thermo-Calc (1/4)

MONTUPET

- Calcul d'équilibre avec les compositions des alliages de base
- Objectif : validation de la représentativité de la base de données TCAL4 de Thermo-Calc

Résultats préliminaires - Thermo-Calc (2/4)

Barlas (2004), Ludwig (2013)

- Dissolution de la phase Q: 421,5 °C
- Dissolution du Silicium: 577,9 °C
- Dissolution de β-Mg₂Si: 441,3 °C
- Dissolution de β -Al₉Fe₂Si₂: 567,2 °C

Résultats préliminaires - Thermo-Calc (3/4)

• Calcul supplémentaire sur un alliage 319 (Al-Si-Cu)

Shabestari (2006), Ovono (2004)

- Dissolution de **θ-Al₂Cu: 495** °C
- Dissolution de α -Al₁₅Si₂(Fe, Mn)₄: 567,2 °C

Résultats préliminaires - Thermo-Calc (4/4)

- Prédiction de toutes les phases observées expérimentalement et rapportées dans la littérature
- Domaines de stabilité des phases proches de ceux prévus par des expériences de DSC (Differential Scanning Calorimetry)
- Validation de la représentativité de la base de données Thermo-Calc TCAL4

Perspectives – Poursuite du travail

Merci de votre attention

Franchissement des précipités

Phases métastables Al-Cu

Séquence de précipitation

 La phase stable est plus stable thermodynamiquement mais elle précipite pas en premier

 Plus faible barrière de germination pour les phases de transition vu leur cohérence avec la matrice

[Easterling, 2009]

Pic de dureté

[Barralis, 1997] 25