Contact Mechanics and Elements of Tribology

 Lectures 2-3. Mechanical ContactVladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France
@ Centre des Matériaux
February 8-9, 2016

Outline

Lecture 2
1 Balance equations
2 Intuitive notions
3 Formalization of frictionless contact
4 Evidence friction
5 Contact types
6 Analogy with boundary conditions

Lecture 3

1 Flamant, Boussinesq, Cerruti
2 Displacements and tractions
3 Classical elastic problems

Boundary value problem in elasticity

■ Reference and current configurations

$$
\underline{x}=\underline{X}+\underline{u}
$$

- Balance equation (strong form)

$$
\nabla \cdot \underline{\underline{\sigma}}+\rho{\underset{-}{v}}=0, \forall \underline{x} \in \Omega^{i}
$$

■ Displacement compatibility

$$
\underline{\underline{\varepsilon}}=\frac{1}{2}(\nabla \underline{\underline{u}}+\underline{u} \nabla)
$$

- Constitutive equation

$$
\underline{\underline{\sigma}}=W^{\prime}(\underline{\underline{\varepsilon}})
$$

Two bodies in contact

- Boundary conditions

Dirichlet: $\underline{u}=\underline{u}^{0}, \forall \underline{x} \in \Gamma_{u}$
Neumann: $\underline{\boldsymbol{n}} \cdot \underline{\underline{\sigma}}=\underline{t}^{0}, \forall \underline{x} \in \Gamma_{f}$

Boundary value problem in elasticity

- Reference and current configurations

$$
\underline{x}=\underline{X}+\underline{u}
$$

- Balance equation (strong form)

$$
\nabla \cdot \underline{\underline{\sigma}}+\rho{\underset{\underline{v}}{v}}=0, \forall \underline{x} \in \Omega^{i}
$$

- Displacement compatibility

$$
\underline{\underline{\varepsilon}}=\frac{1}{2}(\nabla \underline{\underline{u}}+\underline{u} \nabla)
$$

- Constitutive equation

$$
\underline{\underline{\sigma}}=W^{\prime}(\underline{\underline{\varepsilon}})
$$

- Boundary conditions

Dirichlet: $\underline{u}=\underline{u}^{0}, \forall \underline{x} \in \Gamma_{u}$
Neumann: $\underline{\boldsymbol{n}} \cdot \underline{\underline{\sigma}}=\underline{t}^{0}, \forall \underline{x} \in \Gamma_{f}$

1 No penetration

$$
\Omega^{1}(t) \cap \Omega^{2}(t)=\emptyset
$$

2 No adhesion

$$
\underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{n} \leq 0, \forall \underline{x} \in \Gamma_{c}^{i}
$$

3 No shear stress

$$
\underline{n} \cdot \underline{\underline{\sigma}} \cdot(\underline{I}-\underline{n} \otimes \underline{n})=0, \forall \underline{x} \in \Gamma_{c}^{i}
$$

Two bodies in contact

Intuitive contact conditions for frictionless and nonadhesive contact

1 No penetration

$$
\Omega^{1}(t) \cap \Omega^{2}(t)=\emptyset
$$

2 No adhesion

$$
\underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{n} \leq 0, \forall \underline{x} \in \Gamma_{c}^{i}
$$

3 No shear stress

$$
\underline{n} \cdot \underline{\underline{\sigma}} \cdot(\underline{I}-\underline{n} \otimes \underline{n})=0, \forall \underline{x} \in \Gamma_{c}^{i}
$$

Two bodies in contact

Intuitive contact conditions for frictionless and nonadhesive contact

Gap function

- Gap function g
- gap $=-$ penetration
- asymmetric function
- defined for
- separation $g>0$
- contact $g=0$
- penetration $g<0$
- governs normal contact

Gap between a slave point and a master surface

- Master and slave split

Gap function is determined for all slave points with respect to the master surface

Gap function

- Gap function g
- gap $=-$ penetration
- asymmetric function
- defined for
- separation $g>0$
- contact $g=0$
- penetration $g<0$
- governs normal contact

Gap between a slave point and a master surface

Definition of the normal gap
\underline{n} is a unit normal vector, \underline{r}_{s} slave point, $\rho\left(\xi_{\pi}\right)$ projection point at master surface

- No penetration

Always non-negative gap

$$
g \geq 0
$$

- No adhesion

Always non-positive contact pressure

$$
\sigma_{n}^{*} \leq 0
$$

- Complementary condition

Either zero gap and non-zero pressure, or non-zero gap and zero pressure

Scheme explaining normal contact conditions

■ No shear transfer (automatically)

$$
\underline{\sigma}_{t}^{* *}=0
$$

```
\(\sigma_{n}^{*}=(\underline{\underline{\sigma}} \cdot \underline{n}) \cdot \underline{n}=\underline{\underline{\sigma}}:(\underline{n} \otimes \underline{n})\)
\(\underline{\sigma}_{t}^{* *}=\underline{\underline{\sigma}} \cdot \underline{n}-\sigma_{n} \underline{n}=\underline{n} \cdot \underline{\underline{\sigma}} \cdot(\underline{\underline{I}}-\underline{n} \otimes \underline{n})\)
```

- No penetration

Always non-negative gap

$$
g \geq 0
$$

- No adhesion

Always non-positive contact pressure

$$
\sigma_{n}^{*} \leq 0
$$

- Complementary condition

Either zero gap and non-zero pressure, or non-zero gap and zero pressure

Improved scheme explaining normal contact conditions

- No shear transfer (automatically)

$$
\underline{\sigma}_{t}^{* *}=0
$$

$$
\begin{aligned}
& \sigma_{n}^{*}=(\underline{\underline{\sigma}} \cdot \underline{n}) \cdot \underline{n}=\underline{\underline{\sigma}}:(\underline{n} \otimes \underline{n}) \\
& \left.\underline{\sigma}_{t}^{* *}=\underline{\underline{\sigma}} \cdot \underline{n}-\sigma_{n} \underline{\underline{n}}=\underline{\underline{\sigma}} \cdot \underline{\underline{\underline{I}}} \underline{\underline{n}}-\underline{n} \otimes \underline{n}\right)
\end{aligned}
$$

Frictionless or normal contact conditions

In mechanics：

Normal contact conditions

三
Frictionless contact conditions
三
Hertz ${ }_{\mathbf{1}}^{1}$－Signorini ${ }_{\|}{ }^{[2]}$ conditions三

also known in optimization theory as

Improved scheme explaining normal contact conditions

$$
g \geq 0, \quad \sigma_{n} \leq 0, \quad g \sigma_{n}=0
$$

[^0]
Contact problem

\approx Problem

Find such contact pressure

$$
p=-\underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{n} \geq 0
$$

which being applied at Γ_{c}^{1} and Γ_{c}^{2} results in

$$
\underline{x}^{1}=\underline{x}^{2}, \forall \underline{x}^{1} \in \Gamma_{c}^{1}, \underline{x}^{2} \in \Gamma_{c}^{2}
$$

and evidently

$$
\Omega^{1}(t) \cap \Omega^{2}(t)=\emptyset
$$

Two bodies in contact

- Unfortunately, we do not know Γ_{c}^{1} in advance, it is also an unknown of the problem.
- Related problem

Suppose that we know p on Γ_{c}
Then what is the corresponding displacement field \underline{u} in Ω^{i} ?

Contact problem

\approx Problem

Find such contact pressure

$$
p=-\underline{n} \cdot \underline{\underline{\sigma}} \cdot \underline{n} \geq 0
$$

which being applied at Γ_{c}^{1} and Γ_{c}^{2} results in

$$
\underline{x}^{1}=\underline{x}^{2}, \forall \underline{x}^{1} \in \Gamma_{c}^{1}, \underline{x}^{2} \in \Gamma_{c}^{2}
$$

and evidently

$$
\Omega^{1}(t) \cap \Omega^{2}(t)=\emptyset
$$

Two bodies in contact

- Unfortunately, we do not know Γ_{c}^{1} in advance, it is also an unknown of the problem.
- Related problem

Suppose that we know p on Γ_{c}
Then what is the corresponding displacement field \underline{u} in Ω^{i} ?
This afternoon

- Existence of frictional resistance is evident
- Independence of the nominal contact area
-

Think about adhesion and introduce a threshold in the interface τ_{c}

■ Globally:

- stick: $T<T_{c}(N)$
- slip: $T=T_{c}(N)$
- From experiments:
- Threshold $T_{c} \sim N$
- Friction coefficient $f=\left|N / T_{c}\right|$
- Locally
- stick: $\sigma_{\tau}<\tau_{c}\left(\sigma_{n}\right)$
- slip: $\sigma_{\tau}=f \sigma_{n}$

displacement of point A
- Existence of frictional resistance is evident
- Independence of the nominal contact area
-

Think about adhesion and introduce a threshold in the interface τ_{c}

■ Globally:

- stick: $T<T_{c}(N)$
- slip: $T=T_{c}(N)$
- From experiments:
- Threshold $T_{c} \sim N$
- Friction coefficient $f=\left|N / T_{c}\right|$
- Locally
- stick: $\sigma_{\tau}<\tau_{c}\left(\sigma_{n}\right)$
- slip: $\sigma_{\tau}=f \sigma_{n}$

displacement of point A

■ Known contact zone

- conformal geometry flat-to-flat, cylinder in a hole
- initially non-conformal geometry but huge pressure resulting in full contact

■ Unknown contact zone general case

- Point and line contact
- Frictionless
conservative, energy minimization problem

■ Frictional path-dependent solution, from the first touch to the current moment

Example

■ Known contact zone

- conformal geometry flat-to-flat, cylinder in a hole
- initially non-conformal geometry but huge pressure resulting in full contact

■ Unknown contact zone general case

- Point and line contact
- Frictionless conservative, energy minimization problem
- Frictional path-dependent solution, from the first touch to the current moment

■ Known contact zone

- conformal geometry flat-to-flat, cylinder in a hole
- initially non-conformal geometry but huge pressure resulting in full contact

■ Unknown contact zone general case

- Point and line contact
- Frictionless
conservative, energy minimization problem
- Frictional path-dependent solution, from the first touch to the current moment

Example

Analogy with boundary conditions

Flat geometry

- Compression of a cylinder

■ Frictionless $u_{z}=u_{0}$

- Full stick conditions $\underline{u}=u_{0} \underline{e}_{z}$

■ Rigid flat indenter $u_{z}=u_{0}$

Analogy with boundary conditions

Flat geometry

- Compression of a cylinder

■ Frictionless $u_{z}=u_{0}$

- Full stick conditions $\underline{u}=u_{0} \underline{e}_{z}$

■ Rigid flat indenter $u_{z}=u_{0}$

Curved geometry

- Polar/spherical coordinates
$u_{r}=u_{0}$

- If frictionless contact on rigid surface $y=f(x)$ is retained by high pressure

$$
(\underline{X}+\underline{u}) \cdot \underline{e}_{y}=f\left((\underline{X}+\underline{u}) \cdot \underline{e}_{x}\right)
$$

Analogy with boundary conditions

Flat geometry

- Compression of a cylinder

■ Frictionless $u_{z}=u_{0}$

- Full stick conditions $\underline{u}=u_{0} \underline{e}_{z}$

■ Rigid flat indenter $u_{z}=u_{0}$

Curved geometry

- Polar/spherical coordinates

$$
u_{r}=u_{0}
$$

- If frictionless contact on rigid surface $y=f(x)$ is retained by high pressure

$$
(\underline{X}+\underline{u}) \cdot \underline{e}_{y}=f\left((\underline{X}+\underline{u}) \cdot \underline{e}_{x}\right)
$$

Transition to finite friction

- \approx From full stick, decrease f by keeping $u_{z}=0$ and by replacing in-plane Dirichlet BC by in-plane Neumann BC

frictionless

full stick

Analogy with boundary conditions II

In general

- Type I: prescribed tractions

$$
p(x, y), \tau_{x}(x, y), \tau_{y}(x, y)
$$

- Type II: prescribed displacements

$$
\underline{\boldsymbol{u}}(x, y)
$$

- Type III: tractions and displacements

$$
\begin{aligned}
& u_{z}(x, y), \tau_{x}(x, y), \tau_{y}(x, y) \text { or } \\
& p(x, y), u_{x}(x, y), u_{y}(x, y)
\end{aligned}
$$

- Type IV: displacements and relation between tractions $u_{z}(x, y), \tau_{x}(x, y)= \pm f p(x, y)$
- Normal force: in-plane stresses and displacements (plane strain)

$$
\begin{aligned}
& \sigma_{r}=-\frac{2 N}{\pi} \frac{\cos (\theta)}{r} \text { or } \sigma_{x}=-\frac{2 N}{\pi} \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}, \sigma_{y}=-\frac{2 N}{\pi} \frac{y^{3}}{\left(x^{2}+y^{2}\right)^{2}}, \sigma_{x y}=-\frac{2 N}{\pi} \frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& u_{r}=\frac{1+v}{\pi E} N \cos (\theta)[2(1-v) \ln (r)-(1-2 v) \theta \tan (\theta)]+C \cos (\theta) \\
& u_{\theta}=\frac{1+v}{\pi E} N \sin (\theta)[2(1-v) \ln (r)-2 v+(1-2 v)(1-2 \theta \operatorname{ctan}(\theta))]-C \sin (\theta)
\end{aligned}
$$

- Tangential force

$$
\begin{aligned}
& \sigma_{r}=\frac{2 T}{\pi} \frac{\sin (\theta)}{r} \text { or } \sigma_{x}=-\frac{2 T}{\pi} \frac{x^{3}}{\left(x^{2}+y^{2}\right)^{2}}, \sigma_{y}=-\frac{2 T}{\pi} \frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \sigma_{x y}=-\frac{2 T}{\pi} \frac{x^{2} y}{\left.x^{2}+y^{2}\right)^{2}} \\
& u_{r}=-\frac{1+v}{\pi E} T \sin (\theta)[2(1-v) \ln (r)-(1-2 v) \theta \operatorname{ctan}(\theta)]-C \sin (\theta) \\
& u_{\theta}=\frac{1+v}{\pi E} T \cos (\theta)[2(1-v) \ln (r)-2 v+(1-2 v)(1+2 \theta \tan (\theta))]+C \cos (\theta)
\end{aligned}
$$

- Distributed tractions $p(x) d x=d N(x)$, $\tau(x) d x=d T(x)$
- Use superposition principle for the stress state and for displacements

Tractions on the surface

$$
\begin{aligned}
& \sigma_{x}(x, y)=-\frac{2 y}{\pi} \int_{-b}^{a} \frac{p(s)(x-s)^{2} d s}{\left((x-s)^{2}+y^{2}\right)^{2}}-\frac{2}{\pi} \int_{-b}^{a} \frac{\tau(s)(x-s)^{3} d s}{\left((x-s)^{2}+y^{2}\right)^{2}} \\
& \sigma_{y}(x, y)=-\frac{2 y^{3}}{\pi} \int_{-b}^{a} \frac{p(s) d s}{\left((x-s)^{2}+y^{2}\right)^{2}}-\frac{2 y^{2}}{\pi} \int_{-b}^{a} \frac{\tau(s)(x-s) d s}{\left((x-s)^{2}+y^{2}\right)^{2}} \\
& \sigma_{x y}(x, y)=-\frac{2 y^{2}}{\pi} \int_{-b}^{a} \frac{p(s)(x-s) d s}{\left((x-s)^{2}+y^{2}\right)^{2}}-\frac{2 y}{\pi} \int_{-b}^{a} \frac{\tau(s)(x-s)^{2} d s}{\left((x-s)^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

- Distributed tractions $p(x) d x=d N(x)$, $\tau(x) d x=d T(x)$
- Use superposition principle for the stress state and for displacements

Tractions on the surface

$$
\begin{aligned}
& \sigma_{x}(x, y)=-\frac{2 y}{\pi} \int_{-b}^{a} \frac{p(s)(x-s)^{2} d s}{\left((x-s)^{2}+y^{2}\right)^{2}}-\frac{2}{\pi} \int_{-b}^{a} \frac{\tau(s)(x-s)^{3} d s}{\left((x-s)^{2}+y^{2}\right)^{2}} \\
& \sigma_{y}(x, y)=-\frac{2 y^{3}}{\pi} \int_{-b}^{a} \frac{p(s) d s}{\left((x-s)^{2}+y^{2}\right)^{2}}-\frac{2 y^{2}}{\pi} \int_{-b}^{a} \frac{\tau(s)(x-s) d s}{\left((x-s)^{2}+y^{2}\right)^{2}} \\
& \sigma_{x y}(x, y)=-\frac{2 y^{2}}{\pi} \int_{-b}^{a} \frac{p(s)(x-s) d s}{\left((x-s)^{2}+y^{2}\right)^{2}}-\frac{2 y}{\pi} \int_{-b}^{a} \frac{\tau(s)(x-s)^{2} d s}{\left((x-s)^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

- Distributed tractions $p(x) d x=d N(x)$, $\tau(x) d x=d T(x)$
- Use superposition principle for the stress state and for displacements
- Consider displacements on the surface

Tractions on the surface

$$
u_{x}(x, 0)=-\frac{(1-2 v)(1+v)}{2 E}\left[\int_{-b}^{x} p(s) d s-\int_{x}^{a} p(s) d s\right]-\frac{2\left(1-v^{2}\right)}{\pi E} \int_{-b}^{a} \tau(s) \ln |x-s| d s+C_{1}
$$

- Distributed tractions $p(x) d x=d N(x)$, $\tau(x) d x=d T(x)$
- Use superposition principle for the stress state and for displacements
- Consider displacements on the surface

■ Or rather their derivatives along the surface

Tractions on the surface

$$
\begin{gathered}
u_{x}(x, 0)=-\frac{(1-2 v)(1+v)}{2 E}\left[\int_{-b}^{x} p(s) d s-\int_{x}^{a} p(s) d s\right]-\frac{2\left(1-v^{2}\right)}{\pi E} \int_{-b}^{a} \tau(s) \ln |x-s| d s+C_{1} \\
u_{x, x}(x, 0)=-\frac{(1-2 v)(1+v)}{E} p(x)-\frac{2\left(1-v^{2}\right)}{\pi E} \int_{-b}^{a} \frac{\tau(s)}{x-s} d s
\end{gathered}
$$

- Distributed tractions $p(x) d x=d N(x)$, $\tau(x) d x=d T(x)$
- Use superposition principle for the stress state and for displacements
- Consider displacements on the surface
- Or rather their derivatives along the surface

Tractions on the surface

$$
u_{y}(x, 0)=\frac{(1-2 v)(1+v)}{2 E}\left[\int_{-b}^{x} \tau(s) d s-\int_{x}^{a} \tau(s) d s\right]-\frac{2\left(1-v^{2}\right)}{\pi E} \int_{-b}^{a} p(s) \ln |x-s| d s+C_{2}
$$

- Distributed tractions $p(x) d x=d N(x)$, $\tau(x) d x=d T(x)$
- Use superposition principle for the stress state and for displacements
- Consider displacements on the surface
- Or rather their derivatives along the surface

Tractions on the surface

$$
\begin{gathered}
u_{y}(x, 0)=\frac{(1-2 v)(1+v)}{2 E}\left[\int_{-b}^{x} \tau(s) d s-\int_{x}^{a} \tau(s) d s\right]-\frac{2\left(1-v^{2}\right)}{\pi E} \int_{-b}^{a} p(s) \ln |x-s| d s+C_{2} \\
u_{y, x}(x, 0)=\frac{(1-2 v)(1+v)}{E} \tau(x)-\frac{2\left(1-v^{2}\right)}{\pi E} \int_{-b}^{a} \frac{p(s)}{x-s} d s
\end{gathered}
$$

Rigid stamp problem

- Link displacement derivatives with tractions

$$
\begin{aligned}
& \int_{-b}^{a} \frac{\tau(s)}{x-s} d s=-\frac{\pi(1-2 v)}{2(1-v)} p(x)-\frac{\pi E}{2\left(1-v^{2}\right)} u_{x, x}(x, 0) \\
& \int_{-b}^{a} \frac{p(s)}{x-s} d s=\frac{\pi(1-2 v)}{2(1-v)} \tau(x)-\frac{\pi E}{2\left(1-v^{2}\right)} u_{y, x}(x, 0)
\end{aligned}
$$

- If in contact interface we can prescribe $p, u_{x, x}$ or $\tau, u_{y, x}$, then the problem reduces to

$$
\int_{-b}^{a} \frac{\mathcal{F}(x)}{x-s} d s=\mathcal{U}(x)
$$

- The general solution (case $a=b$):

$$
\mathcal{F}(x)=\frac{1}{\pi^{2} \sqrt{a^{2}-x^{2}}} \int_{-a}^{a} \frac{\sqrt{a^{2}-x^{2}} \mathcal{U}(s) d s}{x-s}+\frac{C}{\pi \sqrt{a^{2}-x^{2}}}, \quad C=\int_{-a}^{a} \mathcal{F}(s) d s
$$

Rigid stamp problem

- Link displacement derivatives with tractions

$$
\begin{aligned}
& \int_{-b}^{a} \frac{\tau(s)}{x-s} d s=-\frac{\pi(1-2 v)}{2(1-v)} p(x)-\frac{\pi E}{2\left(1-v^{2}\right)} u_{x, x}(x, 0) \\
& \int_{-b}^{a} \frac{p(s)}{x-s} d s=\frac{\pi(1-2 v)}{2(1-v)} \tau(x)-\frac{\pi E}{2\left(1-v^{2}\right)} u_{y, x}(x, 0)
\end{aligned}
$$

- If in contact interface we can prescribe $p, u_{x, x}$ or $\tau, u_{y, x}$, then the problem reduces to

$$
\int_{-b}^{a} \frac{\mathcal{F}(x)}{x-s} d s=\mathcal{U}(x)
$$

- The general solution (case $a=b$):

$$
\mathcal{F}(x)=\frac{1}{\pi^{2} \sqrt{a^{2}-x^{2}}} \int_{-a}^{a} \frac{\sqrt{a^{2}-x^{2}} \mathcal{U}(s) d s}{x-s}+\frac{C}{\pi \sqrt{a^{2}-x^{2}}}, \quad C=\int_{-a}^{a} \mathcal{F}(s) d s
$$

flat frictionless punch, consider P.V.

- Analogy to Flamant's problem
- Potential functions of Boussinesq
- Boussinesq problem concentrated normal force

■ Cerruti problem concentrated tangential force

- Displacements decay as $\sim r^{-1}$

$$
\begin{aligned}
& u_{r}(x, y, 0)=-\frac{1-2 v}{4 \pi G} \frac{N}{\sqrt{x^{2}+y^{2}}} \\
& u_{z}(x, y, 0)=\frac{1-v}{4 \pi G} \frac{N}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

- Stress decay as $\sim r^{-2}$
- Superposition principle

Classical contact problems

- Various problems with rigid flat stamps: circular, elliptic, frictionless, full-stick, finite friction
- Hertz theory normal frictionless contact of elastic solids

$$
E_{i}, v_{i} \text { and } z_{i}=A_{i} x^{2}+B_{i} y^{2}+C_{i} x y, \quad i=1,2
$$

- Wedges (coin) and cones
- Circular inclusion in a conforming hole Steuermann, 1939,Goodman, Keer, 1965
- Frictional indentation $z \sim x^{n}$

Incremental approach Mossakovski, 1954 self-similar solution Spence, 1968, 1975

■ Adhesive contact Johnson et al, 1971, 1976

- Contact with layered materials (coatings)
- Elastic-plastic and viscoelastic materials
- Sliding/rolling of non-conforming bodies

Cattaneo, 1938,Mindlin, 1949,Galin, 1953,Goryacheva, 1998 Note: $u_{r} \sim(1-2 v) / G$, so if $\left(1-2 v_{1}\right) / G_{1}=\left(1-2 v_{2}\right) / G_{2}$ tangential tractions do not change normal ones

I.G. Goryacheva

V.L. Popov

[^0]: ${ }^{1}$ Heinrich Rudolf Hertz（1857－1894）a German physicist who first formulated and solved the frictionless contact problem between elastic ellipsoidal bodies．
 ${ }^{2}$ Antonio Signorini（1888－1963）an Italian mathematical physicist who gave a general and rigorous mathematical formulation of contact constraints．
 ${ }^{3}$ Jean Jacques Moreau（1923）a French mathematician who formulated a non－convex optimization problem based on these conditions and introduced pseudo－potentials in contact mechanics．
 ${ }^{4}$ William Karush（1917－1997），${ }^{5}$ Harold William Kuhn（1925）American mathematicians，
 ${ }^{6}$ Albert William Tucker（1905－1995）a Canadian mathematician．

