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1 Introduction
The hardening created by the precipitation of hardening particles in the matrix starts with the nucleation of coherent

solute-rich Guinier-Preston zones (GP zones). If the size of the nucleus is larger than the critical radius of nucleation, the
GP zone can grow to become a GP2 zones [1, 2, 3, 4, 5, 6]. The growth of the GP2 particle to a semi-coherent precipitate
is driven by the reduction of the oversaturation of the matrix [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The coarsening process,
which transforms the semi-coherent particle into a non-coherent one is driven by the reduction of the interfacial energy
of the particles [17, 13, 18, 19, 20, 15].

The modeling of the evolution of the size of the precipitates is managed by considering three concomitant regimes :
nucleation, growth and coarsening. They provide a general rate of evolution to the precipitates in order to determine
the evolution of the mean radius R̄ of the size distribution of particles. This approach is mainly based on the works
of Kampmann, Wagner and Langer (KWN approach) [21, 22, 23] and was first carried out by Myhr et al. [24] and
Deschamps et al. [25].

The KWN approach gives a solution based on a 1D discretization of the continuous size distribution of precipitates.
The control of the flux of particles toward the system is ensured by an equation of continuity. The switch between growth
and coarsening is intrinsic to the model. More recently, the same technique was also used by Robson et al. [26, 27], Du
et al. [28] or Martinezet al. [29].

This exercise aims to show how important is the multiscale approach when it comes to accurately model the mechanical
behaviour of a metal. After a short presentation of the material (part 2) the metallurgical model is shortly presented in
part 3. The coupling of the metallurgy to the mechanics is explained in part 4 and 5 while the exercice is in part 6.

2 Material
The material used in this study is a classical secondary 319 foundry aluminum alloy. It is T7 heat treated - 5 h

solutionized, water quenched and 3 h artificialy aged. Its composition is given in table 1.

Elements % Fe % Si % Cu % Zn % Mg % Mn % Ni % Pb % Sn % Ti

% wt. <0.70 7.0-8.5 2.8-3.5 <0.80 0.25-0.40 0.10-0.60 <0.30 <0.10 <0.10 0.10-0.20

Table 1: Chemical composition of the 319 aluminum alloy [29].

The microstructure of the alloy is mainly composed of a proeutectic α-phase, globular eutectic silicon and iron inter-
metallic compounds. The precipitation of θ (Al2Cu) occurs during the T7 heat treatment and enhances the mechanical
properties of the alloy. Figure 1 shows two dark and a bright field micrographs. These micrographs display the precipita-
tion of the alloy after 48 h of aging at 200◦C. The three families of θ′ precipitates can be seen. Each family is oriented
at 90◦ because of its habit planes being the {100} of the matrix. Indeed, the precipitation happens according to the
time-temperature dependent kinetics : GP zone → θ” → θ’ → θ (Al2Cu).

3 Precipitation kinetics model
In the framework of this work, a few assumptions were taken for the sake of the simplicity of the model.
• the transformation sequence during the precipitation process (GP zone → θ′′ → θ′ → θ) was simplified. The three

families of particles are not individually distinguished;

• the nucleation process is assumed to be homogeneous rather than heterogeneous;

• the particles are assumed to be spherical;

• despite the fact that the alloy is a multi-component system, only the diffusion of copper is taken into account.
Silicon and magnesium are assumed to remain in solid solution in the matrix during all the process;

• the interfacial energy of the particles is assumed to be independant of both the orientation and the coherency of
the interface matrix/precipitate.
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Figure 1: Dark and bright fields TEM micrographs of the θ′ precipitation after 48 hours of aging at 200◦C [29].

3.1 Thermodynamics of the nucleation process

Thermodynamics allows the variation ∆G of free energy to be determined in a closed volume α if a particle β
nucleates during a variation of temperature ∆T . To be stable, this particle has to be larger in size than the critical radius
of nucleation R?, which is defined by equation 1 [30] :

R? = − 2.γ
∆GV

(1)

With γ the interfacial energy, which is assumed to be independant of the boundary orientation, and ∆GV the variation
of free energy per unit volume associated with the formation of the new particle. Considering an incubation period, the
time dependent nucleation rate J is given by equation 2 :

J = N.Z.β?.exp

(
−∆G?

kB .T

)
exp

(
−τ
t

)
(2)

When an homogeneous nucleation is assumed, N represents the nucleation site density and can be calculated with
equation 3 :

N = N
V α

(3)

Where N is Avogadro’s number and V α is the molar volume of the matrix.

In equation 2, the Zeldovich’s factor Z converts the equilibrium concentration of the nuclei into the steady state
concentration. It is given by the following equation [30] :

Z = V α.∆G2
V

8.π(γ3.kB .T )1/2 (4)

Where kB is the Boltzmann’s constant and T is the temperature in Kelvin.
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The frequency factor β? (cf. equation 2) is the product of the number of solute atoms in the matrix at the interface
nucleus-matrix in contact with that portion, with the jump frequency across the boundary of such solute atoms. The
diffusion of the solute atoms is effective across this portion by the jump frequency of solute atoms through the interface.
β? can be calculated with the following equation [30] :

β? = 16.π.γ2.D.C̄

∆G2
V .a

4 (5)

Where D = D0.exp

(
− Q

R.T

)
is the diffusion coefficient of the solute in the pro-eutectic α-phase, C̄ is the mean

molar fraction of solute in the matrix and a is the lattice parameter of the matrix.

In equation 2, the free energy ∆G? of a critical particle is the most influential term in the nucleation rate J . ∆G?
is determined using the Gibsian approach [30] :

∆G? = 16.πγ3

3.∆G2
V

(6)

Finally, the incubation time τ (cf. equation 2) of the nucleation represents in equation 2 the inertia that the closed
system has to start the nucleation. It is generally accepted to represent the physics of τ with equation 7 [30] :

τ = 8.kB .T.γ.a4

V α.∆G2
V .D.C̄

(7)

3.2 Thermodynamics of the growing process

If one considers a nucleated cluster of molar fraction Cp, embedded in a oversatured matrix, this cluster will grow
until the oversaturation of the surrounding matrix becomes non-existent. The growth rate vt(R) of a particle of radius
R is given by equation 8 [31, 20, 25, 24, 30] :

vt(R) = dR

dt
= D

R

C̄ − Ci
Cp − Ci

(8)

With Ci being the molar fraction in solute at the interface particle/matrix. This concentration is related to the molar
fraction of solute in the matrix at equilibrium Ce, through the Gibbs-Thomson equation :

Ci = Ce.exp

(
2.γ.V β

R.R.T

)
(9)

The solute mass balance allows the value of C̄ to be expressed as a function of the volume fraction of particles inside
the RVE :

C̄ = C0 − Cp.fv
1− fv

(10)

With C0 being the initial molar fraction of solute in the matrix and fv being the volume fraction of particles.

3.3 From growth to coarsening

The control of the transition between growth and coarsening is managed at different levels. The first level consists
of a continuous control of the evolution of C̄. This can only be done if the mass conservation of the system is strictly
respected via equation 10. If the system is represented by a continuous size distribution of spherical particles, the volume
fraction is given by :

fv =
∫ ∞

0

4
3 .π.R

3.ρ(R).dR (11)
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Where ρ(R) is the continuous size distribution of precipitates.

When the coarsening process starts, the oversaturation of solute in the matrix is close to zero. The critical radius of
growth Rc is the radius that has a growth rate of zero.

3.4 Control of the flux of solute in the size space (R)

The conservation of the mass in the system is regulated by the following equation :

dρ(R)
dt

= −dF
dR

(12)

Where F is the flux of particles in the size space (R). Then, equation 12 can be rewritten as :

dρ(R)
dt

= −d [ρ(R).vt(R)]
dR

(13)

The discretization of the problem and the use of the finite differences allow the next equation to be written :

ρt+∆t(R)− ρt(R)
∆t = −

[
ρ(R+ ∆R).v(R+ ∆R)− ρ(R).vt(R)

∆R

]
θ

(14)

A fully implicit resolution scheme, with θ = t + ∆t is chosen to ensure the stability of the integration. Hence,
equation 14 becomes :

ρt+∆t(R)− ρt(R)
∆t = −

[
ρt+∆t(R+ ∆R).vt(R+ ∆R)− ρt+∆t(R).vt(R)

∆R

]
(15)

The equation above can be written in the following general form (eq. 16) :

ρt+∆t(R). [P ] = ρt+∆t(R−∆R). [G] + ρt+∆t(R+ ∆R) [D] + ρt(R).
[
P 0] (16)

With [P ], [G], [D], and [P 0] being computation parameters. The use of finite differences allows the adjustment of
the scheme as a function of the direction of the fluxes in the size space R. Figure 2 displays, the simplificated 1D discrete
problem. The use of classes of equivalent size has been used to create a spatial grid along the axis R. Each particle is
assumed to belong to a class R, of size ∆R, surrounded by two classes : R −∆R and R + ∆R. The discrete problem
has then two boundaries that we consider to be Rmin and Rmax.

∆ ∆[R−      ]R [R] [R+      ]R

∆R

Figure 2: General scheme of the flux of solute between particles of classes [R− ∆R : R+ ∆R] [29].
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3.5 Tridiagonal matrix

Equation 16 can be expressed by means of a general matricial form, that results from the following notations :
ρt(R) = ρin
ρt+∆t(R) = ρin+1
ρt+∆t(R+ ∆R) = ρi+1

n+1
ρt+∆t(R−∆R) = ρi−1

n+1

(17)

So that, equation 16 becomes :

ρin = ρi−1
n+1.

[−G]
[P 0] + ρin+1.

[P ]
[P 0] + ρi+1

n+1.
[−D]
[P 0] (18)

Then, the matricial relation appears : 
∑
j δ[i,j] = l1∑
j δ[i+1,j] = Msup

[i,j]∑
j δ[i−1,j] = M inf

[i,j]

(19)

Where :

Msup
[i,j] =


0 1 0 .
. 0 1 0
. . 0 1
. . . 0


And :

M inf
[i,j] =


0 . . .
1 0 . .
0 1 0 .
. 0 1 0


The final step is the factorisation of equation 18. The boundary conditions for R = Rmin and R = Rmax are

automatically taken into account through the computation of the parameters P , G, D and P 0. The matricial form of
the general problem becomes :

ρn = ρn+1

(
−M inf

[i,j].
[G]
[P 0] + l1. [P ]

[P 0] −M
sup
[i,j].

[D]
[P 0]

)
(20)

Which is equivalent to the following generic form :

ρin =
∑
j

D[i,j]ρ
j
n+1 (21)

Where the matrix D[i,j] is a tridiagonal matrix defined as :

D[i,j] =



P [1]
P [1]0 − R[1]

P [1]0 0 0

− L[2]
P [2]0 . . 0

0 . . − R[n−1]
P [n−1]0

0 0 − L[n]
P [n]0

P [n]
P [n]0


The size distribution at t+ ∆t is directly obtained by multiplying the vector defining the size distribution at time t by

the inverse matrix of D[i,j]. Computing D−1
[i,j] is an easy task that could be done numerically by a Lower-Upper method,

using a Tri-Diagonal Matrix Algorithm (TDMA) [32, 33].
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4 Yield strength modeling
The micro yield stress σy of an aluminum alloy is assumed to be close to the yield stress of the dendritic α-

phase [25, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. It is thus coupled with the evolution of the mean radius of the
precipitates and involves the following hardening modes:

• Orowan interaction, σoro;

• Peierls interaction, σlattice;

• solid solution hardening, σss.

The resulting yield stress writes:

σy = σoro + σlattice + σss (22)

4.1 Determination of the Orowan stress σoro
Coherent particles are sheared by dislocations, according to the shearing mecanism. Semi-coherent and incoherent

particles are bypassed by dislocations, according to Orowan’s looping mechanism. In the general case, when the alloy
contains shearable and non-shearable particles, the mean obstacle generated by the distribution is:

σoro =
∑
i ρ[i].F [i]∑
i ρ[i] (23)

where F [i] is the obstacle strength.

In the case of shearable particles, F [i] is given by:

F [i] = 2.β.G.b2.r[i]/rcrit (24)
In the case of non-shearable particles, F [i] is independent of r[i] and is given by:

F [i] = 2.β.G.b2 (25)
with rcrit the critical radius for shearing and β a parameter close to 0.5 [25, 37, 44, 45, 35, 36, 43].

4.2 Determination of Peierls stress σlattice
Both the nature of the atoms in the lattice and the structure of dislocation core drive the values of σlattice [46, 47,

48, 49]. In FCC crystals, the energy needed to move a dislocation is constant and does not depend on the temperature.
According to different studies [50, 25, 40, 36, 37, 42], a value of 10 MPa for σlattice is used here.

4.3 Determination of the solid solution stress σss
In aluminium alloys, elements that are in solid solution have an impact on the yield strength value. As they block the

glide of the dislocations, these elements rise to solid solution strengthening. The solid solution hardening creted by Cu
solid solution atoms σss can be expressed as [45]:

σss = kCu.C̄
2/3 (26)

where kCu is a scalling factor.
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5 Effect of the microstructure on the macroscopic viscoplastic model
The elasto-viscoplastic model used in this section is an extension of a classical unified viscoplastic model for cyclic

loading [51, 52]. In a small perturbation framework, the strain is the sum of a thermoelastic strain and an inelastic strain
ε
∼

= εe
∼

+εp
∼
. The introduction of isotropic and kinematic hardening leads to the following definition of the elastic domain

(equation 27):

f(σ
∼
,X

∼
, R) ≤ 0 (27)

where X
∼

is a non linear kinematic hardening variable, R an isotropic hardening non-linear scalar and J the second
invariant of the deviatoric effective stress, denoted by (σ

∼
−X

∼
)d:

J(σ
∼
−X

∼
) =

√
3
2(σ

∼
−X

∼
)d : (σ

∼
−X

∼
)d (28)

The viscoplastic potential Ω of this model is defined by equation 29:

Ω = K

n+ 1

(
f

K

)n+1
(29)

The plastic flow is determined by the normality rule

ε̇p
∼

= ∂Ω
∂σ

∼

= ∂Ω
∂f

∂f

∂σ
∼

= ṗn
∼

(30)

where ṗ is nothing but the cumulated viscoplastic strain rate (equation 31):

ṗ =
√

2
3 ε̇

p
∼

: ε̇p
∼

=
〈
f(σ

∼
,X

∼
, R)

K

〉n
(31)

Two state variables are defined, α
∼

for the kinematic hardening and q for the isotropic hardening:

α̇
∼

= ε̇p
∼
− 3D

2CX∼ ṗ (32)

q̇ = (1− bq) ṗ (33)
Hence, the hardening variables could be deduced:

X
∼

= 2
3Cα∼ (34)

R = bQq (35)
The advanced versions of this type of model use to introduce several X’s. For the sake of CPU efficiency, we restrict

ourselves to two X’s only. In such a case, the simplified shape of the model for pure tension writes:

σ = σy +K (ε̇p)
1
n +Q

(
1− e−bε

p
)

+ C1

D1

(
1− e−D1ε

p
)

+ C2

D2

(
1− e−D2ε

p
)

(36)

In the following, the model is seen as a "microstructure informed" expression, whose parameters depend on the output
of the metallurgical model. The variable σy is the result of the theoretical model computing, at each step of time, the
value of the critical radius as a function of (t,T) and coupling it to a micromechanical model. All the parameters are
temperature dependent.
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6 Results of the precipitation model
6.1 Nucleation

It was mentioned in section 3.1 that the activation energy of nucleation ∆G? is the most influential term affecting
the nucleation rate J (cf. equation 6). Indeed, the parameter ∆G? depends on the free energy ∆GV associated with the
formation of a particle. Its value can be calculated with an analytical model [24, 25] or can be computed with the help
of a thermodynamics software [28, 29]. The method used in this work results from a computation performed with the
software Thermocalc® and the database TTAL7. The driving force ∆GV is calculated at different temperatures as a
function of the mean molar fraction of solute in the matrix C̄ (cf. figure 3). The system considered for the computation
is composed of 7 wt.% of Si and 0.3 wt.% of Mg. The fraction of Cu varies from 0.005 wt.% to 3.8 wt.%. The phases
Al and Si were allowed to transform while the phases Al2Cu and Al5Cu2Mg8Si6 were dormant. Using such a mapping
enables the model to adapt its own value of ∆GV as a function of the temperature and C̄.
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Figure 3: Fitting of the surface generated by Thermocalc to compute ∆GV as a function of the temperature and the mean molar fraction
of solute in the matrix [29].

6.2 Growth and coarsening
The two temperatures used to model growth and coarsening are illustrated in figure 4. A water quench followed by

a maturation and two agings at 250◦C and 300◦C are used to model the T7 thermal treatment.
Figure 5 displays the evolution of the mean radius, the critical radius of growth, the measured radius and the mean

radius computed with the LSW method [53] as a function of time for the temperatures cited above. Table 2 summarizes
the measured and modeled values.

During the quenching process, the main radius R̄ decreases during the time that the nucleation rate is accelerating
(cf. figure 5). The apparition of the first peak of nucleation occurs at the end of the quenching process and the creation
of small particles leads to a drop in the evolution of R̄. During the maturation at 23◦C , the value of the main radius is
steady at 1.8 nm.
When the aging process starts, a second peak of nucleation occurs and leads to a significant drop on the value of R̄
because of the important amount of small nucleated particles. In addition, it also can be noticed on figure 5 that the
critical radius of growth Rc has always a lower value than R∗. Indeed, Rc only depends on the growth rate while R∗
depends on an energetical criterion. Moreover, during nucleation, stable particles have to have a positive growth rate
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Figure 4: Evolution of the temperature used to model the T7 thermal treatment as a function of time [29].

in order to grow. If the value of R∗ was lower than the value of Rc, the nucleated particles would not be stable and
would instantaneously be dissolved. In other words, the nucleation would not lead to the generation of a size distribution
of particles. After 1000 h of aging at 250◦C , the model predicts a mean radius of 34.2 nm while the experimental
value is 46.7 nm. At 300◦C , the fit between the experimental points and the model is not very accurate until 300 h
of aging. Indeed, the almost instantaneous θ′ → θ transformation forces the TEM observations to be in bright field.
Since the transformation is not complete, little semi-coherent precipitates remain out of contrast. This leads to their
loss during measurements and then to the overestimation of the value of the mean radius. This occurs because bright
field observations do not allow a clear distinction between Al2Cu and other types of smaller particles in the α-phase (i.e.
agglomerates of Si and lath-shaped Q-phase particles [15, 54, 55, 16]).

Aging Measured mean KWN
radius (nm) mean radius (nm)

T7 + 24 h at 250◦C 28.1 24.1
T7 + 96 h at 250◦C 28.5 24.1

T7 + 1000 h at 250◦C 46.7 34.2
T7 + 48 h at 300◦C 59.6 35.3
T7 + 300 h at 300◦C 75.0 67.0
T7 + 1000 h at 300◦C 85.2 100.2

Table 2: Comparison between the mean radius measured by TEM and the KWN simulated mean radius at different
stages of aging [29].

The evolution of the volume fraction is consistent with both growth and coarsening theories. While the quench and
the maturation do not significantly affect the volume fraction, the peak of nucleation created by the aging quickly changes
its value. When the process is mainly dominated by growth, the volume fraction of Al2Cu particles increases for both
temperatures (figure 6). Once all the particles are nucleated and the growing process is over, coarsening takes place and
the volume fraction reaches a steady state. At this stage, the volume fraction of Al2Cu particles is about 3.83% and
3.52% at 250◦C and 300◦C respectively. Based on a Al-3.2 wt.% Cu 0.819 wt.% Si 0.32 wt.% Mg ternary system, to
match the concentration of the matrix at equilibrium at 495◦C , a computation with Thermocalc® (i.e. at equilibrium)
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Figure 5: Evolution of the mean radius, the critical radius of growth, the measured radius and the nucleation rate as a function of time at
250◦C and 300◦C [29].

gives a result of 3.88% at 250◦C and 3.59% at 300◦C . These values are consistent with the results given by the model.

The evolution of the oversaturation of the matrix as a function of time is also shown in figure 6. During the quenching
process the inertia of the nucleation allows the oversaturation to increase as the temperature decreases. At the beginning
of the maturation, the oversaturation is at its maximum, and as soon as the precipitation process starts its value decreases
to eventually reach zero.

7 Exercise
In this exercise, we ask you to run a multiscale computation in order to improve an innovative heat treatment process.

This computation is a chain of local computations in which the heat treatment, the precipitation and the mechanical
aspects are disassociated, but are usefull to eachother. Indeed, the thermal computation is used as an input for the pre-
cipitation modeling. The latter is performed by means of a local post-processing computation, and its results are strored
in each Gauss point of the structure. The plane stress mechanical computation uses the precipitation post-processing
results’ as an input. The general scheme of the complete chain is presented in figure 7.

The car manufacturer who designed the cylinder head, asked for an improvement of the modeling of the T7 heat
treatment in order to minimize the residual stresses. For the sake of simplicity, you are going to model the T7 heat
treatment on 1/4 of the fire deck. This is assumed to be representative of the most sensitive area (figure 8). The
perfect homogeneity of the solutionizing treatment is assumed. As a consequence we consider only the water quench,
from 768K to ambiant temperature, followed by 1 hour of maturation at ambiant temperature. After the maturation, a
high temperature tempering treatment and a final cooling process are applied. In this work, you are asked to investigate
the influences of the temperature/time of the tempering, the activation energy of the diffusion and the molar fraction of
solute in the precipitates, on the residual stresses after heat treatment.

Each student is going to be part of a group (4 groups of 2 students in total) and each group is going to run 2 chains
of computations:

Group 1:
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• computation #1: tempering time = 3600s (endTempering = 700s) – tempering temperature = 573K – Q=
120000J/mol – cPrecipitate= 0.334

• computation #2: tempering time = 36000s (endTempering = 33100s) – tempering temperature = 573K – Q=
125000J/mol – cPrecipitate= 1.0

Group 2:

• computation #1: tempering time = 3600s (endTempering = 700s) – tempering temperature = 573K – Q=
125000J/mol – cPrecipitate= 0.334

• computation #2: tempering time = 36000s (endTempering = 33100s) – tempering temperature = 573K – Q=
130000J/mol – cPrecipitate= 1.0

Group 3:

• computation #1: tempering time = 3600s (endTempering = 700s) – tempering temperature = 523K – Q=
120000J/mol – cPrecipitate= 0.334

• computation #2: tempering time = 36000s (endTempering = 33100s) – tempering temperature = 523K – Q=
125000J/mol – cPrecipitate= 1.0

Group 4:

• computation #1: tempering time = 3600s (endTempering = 700s) – tempering temperature = 523K – Q=
125000J/mol – cPrecipitate= 0.334

• computation #2: tempering time = 36000s (endTempering = 33100s) – tempering temperature = 523K – Q=
120000J/mol – cPrecipitate= 1.0

The conclusion of this work is expected to be a detailed report, in which your recommendation concening the best
set of parameters are justified.
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