

DMS 2015 MODELES A CRITERES MULTIPLES

Georges Cailletaud

MINES ParisTech, PSL Research University, CNRS Centre des Matériaux, UMR 7633

・ロト ・日 ・ モ ・ ・ モ ・ つくぐ

Plan

Introductive remarks

- Ingredient of classical elasto-(visco)plastic constitutive equations
- J₂ multimechanism models
 - Formulation
 - 2M2C and 2M1C
 - Typical behavior of 2M2C and 2M1C models
 - Ratchetting for 2M2C and 2M1C
 - Identification of the model
- 5 Concluding remarks
- 6 Bonus : extensions of the model

ヘロン 人間 とくほ とくほ とう

Purpose of the talk

- Briefly present the thermodynamical framework for unified approaches
- Introduce multimechanism models, J₂ type
- Illustrate the capabilities of the new model with reference to a ratchetting data base on 316 Stainless Steel

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

State variable, hardening variables

The free energy Ψ , used as a potential, defines stress and hardening variables knowing elastic strain and state variables

- Reversible part of the model
 - Elastic strain $\underline{\epsilon}^e$ and stress σ

$$\underline{\sigma} = \rho \frac{\partial \Psi}{\partial \underline{\varepsilon}^e}$$

 $A_I = \rho \frac{\partial \Psi}{\partial \alpha_I}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Dissipative part of the model
 - Strain like variables : State variables α_I
 - Stress like variables : Hardening variables A₁

Classical isotropic + kinematic hardening

$$\Psi = \Psi^e + \Psi^p$$

- State variables $\underline{\varepsilon}^{e}, \underline{\alpha}, r$
- Stress σ_{α}
- Hardening variables X and R

Elastic part is then fully characterized (ε^e is observable)

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

Modèles multicritères

3 décembre 2015 5 / 44

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

Dissipative part

- Yield function $f(\sigma, X, R)$
- Flow potential $\Omega(f)$ + normality rule

$$\dot{\varepsilon}^{p} = \frac{\partial \Omega}{\partial \underline{\sigma}} = \frac{\partial \Omega}{\partial f} \frac{\partial f}{\partial \underline{\sigma}} = \dot{p}_{\underline{\alpha}}$$

• Hardening potential $\Omega_h(\sigma, X, R)$

$$\dot{\alpha} = -\frac{\partial \Omega_h}{\partial \chi} \qquad \dot{r} = -\frac{\partial \Omega_h}{\partial R}$$

• Example 1 : linear hardening, $\alpha = \varepsilon^{p}$ r = p

$$f(\underline{\sigma}, \underline{X}, R) = J(\underline{\sigma} - \underline{X}) - R - \sigma_y \qquad \Omega = \Omega_h = \frac{n+1}{K} \left\langle \frac{f}{K} \right\rangle^{n+1}$$

Notation: $\dot{p} = \frac{\partial \Omega}{\partial f} = \left\langle \frac{f}{K} \right\rangle^n \qquad n = \frac{\partial f}{\partial \underline{\sigma}}$
 $\dot{\alpha} = \dot{p}\underline{n} \qquad \dot{r} = \dot{p}$

Generalized normality rule if $\Omega_h \equiv \Omega$

. .

Nonlinear hardening

Additional terms in the potential

$$\Omega = \frac{n+1}{K} \left\langle \frac{f}{K} \right\rangle^{n+1} \qquad \Omega_h = \Omega + \frac{3D}{4C} X : X + \frac{R^2}{2Q}$$
$$\dot{\alpha} = \dot{\varepsilon}^p - \frac{3D}{2C} X \dot{p} \qquad \dot{r} = (1 - \frac{R}{Q}) \dot{p}$$

Hardening variables

$$X = \frac{2}{3}C\dot{\alpha} = \frac{2}{3}C\dot{\varepsilon}^{p} - DX\dot{p} \qquad \dot{R} = b(Q-R)\dot{p}$$

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

3 décembre 2015 7 / 44

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

Evaluation of the dissipation

 The intrinsic dissipation is the difference between the plastic power and the power temporarly stored by the hardening mechanisms

$$\mathcal{D} = \underbrace{\sigma}_{\alpha} : \underbrace{\dot{\varepsilon}}^{\rho} - \rho \Psi$$
$$= \underbrace{\sigma}_{\alpha} : \underbrace{\dot{\varepsilon}}^{\rho} - \underbrace{\chi}_{\alpha} : \underbrace{\dot{\alpha}}_{\alpha} - R\dot{\rho}$$
$$= \underbrace{\sigma}_{\alpha} : \frac{\partial\Omega}{\partial\sigma} + \underbrace{\chi}_{\alpha} : \frac{\partial\Omega_{h}}{\partial\chi} + R\frac{\partial\Omega_{h}}{\partial R}$$

 \mathcal{D} is automatically positive iff $\Omega \equiv \Omega_h$ and Ω is convex

イロト イポト イヨト イヨト

Facts concerning ratchetting

- Onedimensional ratchetting
 - Depends on hardening intensity
 - Stopped by linear hardening (either closed or open loop depending on stress range)
 - Too large with non linear hardening
 - Can be adapted by using several kinematic variables, and/or thresholds in the kinematic variables
- Twodimensional ratchetting
 - Depends on hardening intensity and direction
 - Too small with linear hardening
 - Too large with classical non linear hardening
 - Can be adapted by a combination of classical non linear hardening and radial fading memory

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

Plan

3

Introductive remarks

Ingredient of classical elasto-(visco)plastic constitutive equations

J₂ multimechanism models

- Formulation
- 2M2C and 2M1C
- Typical behavior of 2M2C and 2M1C models
- Ratchetting for 2M2C and 2M1C

Identification of the model

- 5 Concluding remarks
- 6 Bonus : extensions of the model

Multimechanism *versus* unified models (1)

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Multimechanism *versus* unified models (1)

Example of a multimechanism model with von Mises local criteria

・ロト ・ () ト ・ ヨト ・ ヨト

Anatomy of a multimechanism model

- Several sets of potentials, then several components of the plastic strain rate
- Several sets of $(\underline{\sigma}', \underline{\chi}', R', \underline{\alpha}', r')$
- Stress σ'_{a} for mechanism *I* obtained through a concentration tensor $B'_{a} = \frac{\partial \sigma'}{\partial \sigma}$. For the initial version of the models, $B'_{a} = I$ has been chosen
 - Each σ^l is involved in different yield functions f^l (Ω(f^l(σ^l))) (2M2C model and crystal plasticity)

$$\dot{\varepsilon}^{\rho} = \sum_{I} \frac{\partial \Omega^{I}}{\partial \underline{\sigma}} = \sum_{I} \frac{\partial \Omega^{I}}{\partial f^{I}} \frac{\partial f^{I}}{\partial \underline{\sigma}} = \sum_{I} \frac{\partial \Omega^{I}}{\partial f^{I}} \underline{n}^{I} : \underline{\mathbb{R}}^{I} \qquad \text{several multiplyiers}$$

• Each $\underline{\sigma}^{l}$ is involved in a global criterion $f(\Omega(f(\underline{\sigma}^{l})))$ (2M1C model)

$$\dot{\varepsilon}^{\rho} = \frac{\partial \Omega}{\partial \underline{\sigma}} = \frac{\partial \Omega}{\partial f} \frac{\partial f}{\partial \underline{\sigma}} = \frac{\partial \Omega}{\partial f} \sum_{I} \underline{n}^{I} : \underline{B}^{I} \qquad \text{one multiplyier}$$

Each mechanism is either plastic or viscoplastic

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー・ つへの

Plan

3

Introductive remarks

Ingredient of classical elasto-(visco)plastic constitutive equations

<ロ> (四) (四) (三) (三) (三) (三)

J₂ multimechanism models

- Formulation
- 2M2C and 2M1C
- Typical behavior of 2M2C and 2M1C models
- Ratchetting for 2M2C and 2M1C

Identification of the model

- 5 Concluding remarks
- 6 Bonus : extensions of the model

2M2C model : state variables and flow

- 2 mechanisms (α^1 , α^2 , r^1 , r^2), two criteria (yield functions)
- Free energy, depends on α^1 , α^2 , r^1 , r^2 :

$$b\Psi = \frac{1}{3} \sum_{I} \sum_{J} C_{IJ} \underline{\alpha}^{I} : \underline{\alpha}^{J} + \frac{1}{2} \sum_{I} b_{I} Q_{I} (r^{I})^{2}$$
$$\underline{X}^{I} = \frac{2}{3} \sum_{J} C_{IJ} \underline{\alpha}^{J} \qquad R^{I} = b_{I} Q_{I} r^{I}$$

• Potential, sum of two terms :

$$f' = J(\underline{\sigma} - \underline{X}') - R' - R'_0 \qquad \Omega = \Omega^1(f^1) + \Omega^2(f^2)$$
$$\dot{\underline{\varepsilon}}^p = \frac{\partial \Omega^1}{\partial f^1} \underline{n}^1 + \frac{\partial \Omega^2}{\partial f^2} \underline{n}^2 \text{ with } \underline{n}' = \frac{\partial f'}{\partial \underline{\sigma}}$$

Each flow can be viscoplastic or plastic

2M1C model : state variables and flow

- 2 mechanisms (α^1 , α^2 , r), one criterion (yield function)
- Free energy, depends on α^1 , α^2 , r:

$$\rho \Psi = \frac{1}{3} \sum_{I} \sum_{J} C_{IJ} \alpha^{I} : \alpha^{J} + \frac{1}{2} b Q r^{2}$$
$$\chi^{I} = \frac{2}{3} \sum_{J} C_{IJ} \alpha^{J} \qquad R = b Q r$$

• Potential, depends on one yield only :

$$f = \left(J(\underline{\sigma} - \underline{X}^{1})^{2} + J(\underline{\sigma} - \underline{X}^{2})^{2}\right)^{1/2} - R - R_{0} \qquad \Omega \equiv \Omega(f)$$

$$\dot{\varepsilon}^{p} = \frac{\partial \Omega}{\partial f} \underset{\sim}{n} \quad \text{with} \quad \underset{\sim}{n} = \frac{J_{1} \underset{\sim}{n}^{1} + J_{2} \underset{\sim}{n}^{2}}{(J_{1}^{2} + J_{2}^{2})^{1/2}}$$

and $J_{l} = J(\underset{\sim}{\sigma} - \underset{\sim}{X}^{l}) \quad \underset{\sim}{n}^{l} = \frac{3}{2} \frac{\underset{\sim}{\Sigma} - \underset{J^{l}}{X}^{l}}{J^{l}}$

Only one (visco)plastic flow

Comparison between 2M2C and 2M1C model features

• Application of the normality rule

• Coupling between the hardening variables

$$\begin{pmatrix} X_1 \\ \widetilde{X}_2 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{12} & C_{22} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \widetilde{\alpha}_2 \end{pmatrix}$$

• Ratchetting iff the determinant $C_{11}C_{22} - C_{12}^2 = 0$

イロト イポト イヨト イヨト

2M2C model : hardening

• Hardening rules :

$$\dot{\alpha}^{\prime} = \left(\underbrace{n^{\prime}}_{\sim} - \frac{3D_{l}}{2C_{ll}} \underbrace{X^{\prime}}_{\sim} \right) \frac{\partial \Omega^{\prime}}{\partial f^{\prime}} \qquad \dot{r} = \left(1 - \frac{R^{\prime}}{Q_{l}} \right) \frac{\partial \Omega^{\prime}}{\partial f^{\prime}}$$

• Denote
$$\dot{p}' = \frac{\partial \Omega'}{\partial f'}$$
 for plastic, and $\dot{v}' = \frac{\partial \Omega'}{\partial f'}$ for viscoplastic flow

 Three possible models : 2M2C-VV, two viscoplastic strains 2M2C-PP, two plastic strains 2M2C-VP, one plastic, one viscoplastic ž

$$\begin{split} \dot{\varepsilon}^{p} &= \dot{v}^{1} \overset{n}{\underset{\sim}{n}^{1}} + \dot{v}^{2} \overset{n}{\underset{\sim}{n}^{2}} \\ \dot{\varepsilon}^{p} &= \dot{p}^{1} \overset{n}{\underset{\sim}{n}^{1}} + \dot{p}^{2} \overset{n}{\underset{\sim}{n}^{2}} \\ \dot{\varepsilon}^{p} &= \dot{v}^{1} \overset{n}{\underset{\sim}{n}^{1}} + \dot{p}^{2} \overset{n}{\underset{\sim}{n}^{2}} \end{split}$$

イロト 不得 とくほと くほとう

2M2C-PP model

For two mechanisms :

$$\begin{split} \dot{\lambda}^{1} &= \left\langle \frac{M_{22}\underline{n}^{1}: \dot{\underline{\sigma}} - M_{12}\underline{n}^{2}: \dot{\underline{\sigma}}}{M_{11}M_{22} - M_{12}M_{21}} \right\rangle \\ \dot{\lambda}^{2} &= \left\langle \frac{M_{11}\underline{n}^{2}: \dot{\underline{\sigma}} - M_{21}\underline{n}^{1}: \dot{\underline{\sigma}}}{M_{11}M_{22} - M_{12}M_{21}} \right\rangle \end{split}$$

with

$$M_{II} = C_{II} - D_I \overset{X}{\underset{\sim}{\times}}^I : \overset{I}{\underset{\sim}{\times}}^I + b_I (Q_I - R^I)$$
$$M_{IJ} = \frac{2}{3} C_{IJ} \overset{I}{\underset{\sim}{\times}}^I : \overset{J}{\underset{\sim}{\times}}^J - D_J \frac{C_{IJ}}{C_{JJ}} \overset{I}{\underset{\sim}{\times}}^I : \overset{X}{\underset{\sim}{\times}}^J$$

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

<ロ> (四) (四) (三) (三) (三)

2M2C-VP model (1)

Viscoplastic part
$$(1 \equiv v)$$

Plastic part
$$(2 \equiv p)$$

.....

$$f^{v} = J(\underbrace{\sigma}_{i} - \underbrace{X}_{i}^{v}) - R^{v} - R_{ov}$$

$$\underbrace{X}_{i}^{v} = (2/3)C_{v}\underbrace{\alpha}_{v}^{v} + C_{vp}\underbrace{\alpha}_{i}^{p}$$

$$R^{v} = b_{v}Q_{v}r^{v}$$

$$\underbrace{\dot{\alpha}}_{i}^{v} = \underbrace{\dot{\varepsilon}}_{i}^{v} - \left(\frac{3D_{v}}{2C_{v}}\right)\underbrace{X}_{i}^{v}\dot{v}$$

$$\dot{r}^{v} = \left(1 - \frac{R^{v}}{Q_{v}}\right)\dot{v}$$

$$\dot{v} = \left\langle\frac{f^{v}}{K}\right\rangle^{n}$$

$$f^{p} = J(\underline{\sigma} - \underline{\chi}^{p}) - R^{p} - R_{op}$$
$$\underline{\chi}^{p} = (2/3)C_{p}\underline{\alpha}^{p} + C_{vp}\underline{\alpha}^{v}$$
$$R^{p} = b_{p}Q_{p}r^{p}$$
$$\dot{\underline{\alpha}}^{p} = \underline{\dot{\varepsilon}}^{p} - \left(\frac{3D_{p}}{2C_{p}}\right)\underline{\chi}^{p}\dot{\lambda}$$
$$\dot{r}^{p} = \left(1 - \frac{R^{p}}{Q_{p}}\right)\dot{p}$$
$$\dot{\lambda} = \frac{\langle \underline{\dot{\sigma}} - C_{vp}\underline{\dot{\alpha}}^{v} \rangle : \underline{n}^{p}}{H_{p}}$$
with $H_{p} = C_{p} - D_{p}\underline{\chi}^{p} : \underline{n}^{p} + b_{p}(Q_{p} - R^{p})$

ヘロト 人間 とくほとくほとう

2M2C-VP model (2)

Remark : consistency condition for 2M2C-VP model

$$\dot{f}^{\rho} = \overset{}{n}^{\rho} : \overset{}{\underline{\sigma}} - \overset{}{n}^{\rho} \overset{}{\underline{X}}^{\rho} - \dot{R}^{\rho}$$

Coupling through :

$$X_{\sim}^{p} = C_{pp} \dot{\alpha}^{pp} + C_{vp} \dot{\alpha}^{vp}$$

$$X^{p} = C_{pp} \left(\underbrace{n^{p}}_{\sim} - \frac{3D_{p}}{2C_{pp}} X^{p}_{\sim} \right) \dot{p} + C_{vp} \left(\underbrace{n^{v}}_{\sim} - \frac{3D_{v}}{2C_{vv}} X^{v}_{\sim} \right) \dot{v}$$

$$\dot{R}^{\rho} = b_{\rho}Q_{\rho}\left(1-rac{R^{\rho}}{Q_{\rho}}
ight)\dot{\rho}$$

The plastic increment \dot{p} is now time dependent...

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

Modèles multicritères

2M2C-VP model(3)

- Limitation of the viscous stress for very high strain rate by the time independent model
- The yield limit for creep can be much lower than yield limit for inviscid plasticity
- Full/limited coupling between plasticity and creep
- Special coefficient sets provide *inverse strain rate* effect (lower stress for higher strain rate)

イロン イボン イヨン イヨン 三日

2M1C-P : plastic multiplyier

$$\dot{\lambda} = \left\langle \frac{(J_1 \underline{n}^1 + J_2 \underline{n}^2) : \dot{\sigma}}{h_R + h_{X1} + h_{X2}} \right\rangle$$

with :

$$h_{R} = b(Q-R)R$$

$$h_{X1} = \frac{2}{3} \left(\prod_{i=1}^{n} -\frac{3D_{1}}{2C_{11}} \sum_{i=1}^{n} X^{1} \right) : \left(C_{11}J_{1}\prod_{i=1}^{n} + C_{12}J_{2}\prod_{i=1}^{n} X^{2} \right)$$

$$h_{X2} = \frac{2}{3} \left(\prod_{i=1}^{n} -\frac{3D_{2}}{2C_{22}} \sum_{i=1}^{n} X^{2} \right) : \left(C_{12}J_{1}\prod_{i=1}^{n} + C_{22}J_{2}\prod_{i=1}^{n} X^{2} \right)$$

No ratchetting, except if $C_{11}C_{22} - C_{12}^2 = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plan

3

Introductive remarks

Ingredient of classical elasto-(visco)plastic constitutive equations

<ロ> (四) (四) (三) (三) (三) (三)

J₂ multimechanism models

- Formulation
- 2M2C and 2M1C
- Typical behavior of 2M2C and 2M1C models
- Ratchetting for 2M2C and 2M1C

Identification of the model

- 5 Concluding remarks
- 6 Bonus : extensions of the model

2M2C-VP model : Balance between plastic and viscoplastic strain

 $K = 500; n = 7; R_0^v = 80; C_v = 10000; D = 100; R_0^p = 140; C_p = 20000; D = 200$

イロト イポト イヨト イヨト

2M2C-VP model : Influence of the coupling term

Creep 555 h at 140 MPa, then tension at $\dot{\epsilon} = 10^{-4} s^{-1}$ reference in tension at $\dot{\epsilon} = 10^{-4} s^{-1}$

イロト イポト イヨト イヨト

2M2C-VP model : Inverse strain rate effect

2M1C-P : Plastic shakedown

Steady state presenting an open loop under non symmetrical loading

イロト イポト イヨト イヨト

Plan

3

Introductive remarks

Ingredient of classical elasto-(visco)plastic constitutive equations

<ロ> (四) (四) (三) (三) (三) (三)

J₂ multimechanism models

- Formulation
- 2M2C and 2M1C
- Typical behavior of 2M2C and 2M1C models
- Ratchetting for 2M2C and 2M1C

Identification of the model

- 5 Concluding remarks
- 6 Bonus : extensions of the model

Ratchetting behavior, Regular Matrix

No ratchetting since the determinant $C_{11}C_{22} - C_{12}^2 \neq 0$

Ratchetting behavior, Singular Matrix

Ratchetting since the determinant $C_{11}C_{22} - C_{12}^2 = 0$

Modèles multicritères

Possible improvements

- The ratchetting behavior in the multimechanism models is the result of :
 - The character of the hardening matrix (Regular or Singular)
 - The evolution rules of the kinematic hardening variables (Linear or Non Linear)
- The source of improvements are :
 - The localization rules of the micro-mechanical (β -rule)
 - The evolution rules etablished for the unified models

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

An identification of the model

Experimental data base of a 316 stainless steel ([Portier et al., 2000]) tests at room temperature (25°C)

- Monotonic tensile tests,
- Cyclic uni-axial tension-compression for three strain ranges,
- Tension-torsion ratchetting tests with two values of tensile stress and with different shear strain amplitude,
- Tension-torsion out-of-phase test in the steady-state stress response.

2M1C_ β and 2M2C_ β have been identified

イロン イボン イヨン イヨン 三日

Cyclic tests

Cyclic behavior

ヘロト 人間 とくほとくほう

Onedimensional ratchetting

Tension ratchetting

イロト イポト イヨト イヨト

Twodimensional ratchetting (1)

Axial stress 80 MPa

イロト イポト イヨト イヨト

Twodimensional ratchetting (2)

Axial stress 100 MPa

イロト イロト イヨト

2D ratchetting, increasing strain amplitude (1)

・ロト ・ 日 ・ ・ ヨ ・

2D ratchetting, increasing strain amplitude (2)

2D ratchetting increasing shear strain amplitude

Out-of-phase test

・ロト ・回ト・ モート

Concluding remarks

- Other versions are possible in the *nMmC* model class
- Fully equipped with singular and regular/singular matrices
- Choices of fading memory terms, strain memory effect, etc.
- High versatility wrt ratchetting behavior, additional hardening
- Several groups are involved in new developments
 - K. Sai (ENIS Sfax, Tunisia) [Cailletaud and Saï, 1995, Sai and Cailletaud, 2006, Saï and Cailletaud, 2007, Cailletaud and Saï, 2008, Saï et al., 2012, Saï et al., 2014]
 - L. Taleb (INSA Rouen, France) [Taleb et al., 2006, Taleb and Cailletaud, 2010, Taleb and Cailletaud, 2011, Saï et al., 2014]
 - M. Wolff (Univ. Bremen, Germany) [Wolff and Taleb, 2008]

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

イロン イボン イヨン イヨン 三日

Bonus : extensions of the model

Alternative form of 2M1C's criterion

Instead of

$$f = \left(J(\underline{\sigma} - \underline{X}^{1})^{2} + J(\underline{\sigma} - \underline{X}^{2})^{2}\right)^{1/2} - R - R_{0} = \left(J_{1}^{2} + J_{2}^{2}\right)^{1/2} - R - R_{0}$$

Write

$$f = \left(J(\underline{\sigma} - \underline{X}^{1})^{N} + J(\underline{\sigma} - \underline{X}^{2})^{N}\right)^{1/N} - R - R_{0} = \left(J_{1}^{N} + J_{2}^{N}\right)^{1/N} - R - R_{0}$$

• Continuous transition from 2M1C (N = 2) to 2M1C ($N \rightarrow \infty$)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Influence of N on additional hardening

Maximum for N = 3, optimum wrt experiment, N = 2 (or N = 4)

イロト イポト イヨト イヨト

Alternative form of the fading memory term

• Instead of using X_{\sim}^{\prime} ,

$$\dot{\alpha}' = \left(\underset{\sim}{n'} - \frac{3D_l}{2C_{ll}} \underset{\sim}{X'} \right) \dot{p}'$$

1/ Use α'

$$\dot{\alpha}' = \left(\underline{n}' - D_I \underline{\alpha}'\right) \dot{p}'$$

(the thermodynamical aspect is then more difficult to achieve) 2/ Use $(1 - \eta)\alpha' + \eta(\alpha': n')n'$

$$\dot{\alpha}' = \left(\underline{n}' - D_{I}\left[(1 - \eta)\alpha' + \eta(\alpha':\underline{n}')\right]\right)\dot{p}'$$

(one more parameter, η , to adjust the direction of the fading memory term)

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

Warning : thermodynamics must be respected

General condition

$$C_{11}C_{22} - C_{12}^2 \ge 0$$

In case of a fading memory with η

$$\eta \leqslant 1 - \sqrt{rac{C_{12}^2(D_1 + D_2)^2}{4C_{11}C_{22}D_1D_2}}$$

• Example with
$$C_{11}C_{22} - C_{12}^2 < 0$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ○

Cailletaud, G. and Saï, K. (1995).

Study of plastic/viscoplastic models with various inelastic mechanisms. *Int. J. of Plasticity*, 11 :991–1005.

Cailletaud, G. and Saï, K. (2008).

A polycrystalline model for the description of ratchetting : effect of intergranular and intragranular hardening. *Materials Science and Engineering A*, 480 :24–39.

ñ

Portier, L., Calloch, S., Marquis, D., and Geyer, P. (2000).

Ratchetting under tension–torsion loadings : experiments and modelling. Int. J. of Plasticity, 16:303–335.

Sai, K. and Cailletaud (2006).

A multi-mechanism model for the description of ratchetting : effect of the scale transition rule and of the coupling between hardening variables.

In Khan, A. and Kazmi, R., editors, *Plasticity'06 : Anisotropy, texture, Dislocations and multiscale modeling in finite plasticity*, Halifax, Canada.

Saï,

Saï, K. and Cailletaud, G. (2007).

Multi-mechanism models for the description of ratchetting : Effect of the scale transition rule and of the coupling between hardening variables.

Int. J. of Plasticity, 23 :1589-1617.

Saï, K., Taleb, L., and Cailletaud, G. (2012).

Numerical simulation of the anisotropic behavior of 2017 aluminum alloy.

Computational Materials Science, 65:48-57.

Saï, K., Taleb, L., Guesmi, F., and Cailletaud, G. (2014).

Multi-mechanism modeling of proportional and non-proportional ratchetting of stainless steel 304. *Acta Mech.*

Taleb, L. and Cailletaud, G. (2010).

An updated version of the multimechanism model for cyclic plasticity.

Georges Cailletaud (Mines ParisTech, PSL, CNRS)

Modèles multicritères

3 décembre 2015 44 / 44

イロト イポト イヨト イヨト

Bonus : extensions of the model

Int. J. of Plasticity, 26 :859-874.

Taleb, L. and Cailletaud, G. (2011).

Cyclic accumulation of the inelastic strain in the 304I ss under stress control at room temperature : Ratcheting or creep ?

Int. J. of Plasticity, 27 :1936-1958.

Taleb, L., Cailletaud, G., and Blaj, L. (2006).

Numerical simulation of complex ratcheting tests with a multi-mechanism model type. Int. J. of Plasticity, 22 :724–753.

Wolff, M. and Taleb, L. (2008).

Consistency for two multi-mechanism models in isothermal plasticity. Int. J. of Plasticity, 24 :2059–2083.

イロト 不得 とくほと くほとう