Contact mechanics and elements of tribology Lecture 6. Roughness and coupled problems

Vladislav A. Yastrebov

MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France

> @ Centre des Matériaux February 11, 2016

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Fig. Epitaxial surface growth [3,4]

J.Polák, J. Man & K. Orbtlík, Int J Fatigue 25 (2003)
 V.K. Tolpygo, D.R. Clarke, Acta Mat 52 (2004)
 M. Einax, W. Dieterich, P. Maass, Rev Mod Phys 85 (2013)
 J.R. Arthur, Surf Sci 500 (2002)

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- dry friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. True contact area and stress fluctuations

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- dry friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. True contact area and stress fluctuations

Natural and industrial surfaces are *rough*:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- dry friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. Numerical simulation of airflow around a (dimpled) golf ball [5]

[5] C.E. Smith, PhD thesis (2011)

Natural and industrial surfaces are rough:

- processing
- polishing
- coating
- microstructure
- surface energy
- deformation
- aging
- environment

Roughness affects:

- stress-strain state
- dry friction
- wear
- adhesion
- fluid flow
- sealing
- energy transfer

Fig. Fluid passage through free volume between rough surfaces

- Roughness scale
- Two different materials (with microstructures)
- Two different roughness

Plasticity induced roughness Dislocation traces Phase transformations Visco-plasticity Fracture / wear

Roughness

Characterisation & modeling

Contamination Corrosion Electromigration Convection Tunneling

Other physics

All phenomena described by other equations

Transport thermal, electric, fluid Tribology lubrication Environment & chemistry oxidation, corrosion Metallurgy

phase transformations

Mechanics

Scale-relevant material and interface models

Tribology

wear, adhesion, 3rd body

Roughness

Isotropic, Gaussian, self-affine

Mechanics

Other physics

Fluid transport for incompressible fluid

Linear elasticity Frictionless and non-adhesive contact

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$
 - *k* is a wavenumber, *H* is the Hurst exponent.
- Isotropic/anisotropic surfaces
- **Gaussian**/non-Gaussian height distribution *P*(*h*)

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$
 - *k* is a wavenumber, *H* is the Hurst exponent.
- Isotropic/anisotropic surfaces
- **Gaussian**/non-Gaussian height distribution *P*(*h*)

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- Isotropic/anisotropic surfaces
- **Gaussian**/non-Gaussian height distribution *P*(*h*)

Fig. Power spectral density, measurements

[1] Majumdar, Tien, Wear 136 (1990)

- [2] Schmittbuhl, Jørgen Måløy, Phys. Rev. Lett. 78 (1997)
- [3] Vallet, Lasseux, Sainsot, Zahouani, Tribol. Int. 42 (2009)

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- Isotropic/anisotropic surfaces
- **Gaussian**/non-Gaussian height distribution *P*(*h*)

Fig. Power spectral density, geological scales

Adapted from [4] Renard, Candela, Bouchaud, Geophys. Res. Lett. 40 (2013)

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- Isotropic/anisotropic surfaces
- **Gaussian**/non-Gaussian height distribution *P*(*h*)

Fig. Height distribution of a polished metal surface

- Fractal (self-affine) roughness
- Power spectral density (PSD) $\Phi(k) \sim k^{-2(H+1)}$

k is a wavenumber, *H* is the Hurst exponent.

- Isotropic/anisotropic surfaces
- **Gaussian**/non-Gaussian height distribution *P*(*h*)
- Characteristics:
 - $\sqrt{\langle h^2 \rangle}$ rms heights
 - $\sqrt{\langle |\nabla h|^2 \rangle}$ rms slope (surface gradient)
 - $\alpha = m_{00}m_{40}/m_{20}^2$ breadth of the spectrum (Nayak's parameter^[B]),

spectral moments $m_{pq} = \iint_{-\infty}^{\infty} k_x^p k_y^q \Phi(k_x, k_y) dk_x dk_y$

Random process theory

[A] Longuet-Higgins, Philos. Trans. R. Soc. A 250:157 (1957)
[B] Nayak, J. Lub. Tech. (ASME) 93:398 (1973)
[C] Greenwood, Wear 261: 191 (2006)
[D] Borri, Paggi, J. Phys. D Appl Phys 48:045301 (2015)

Fig. Height distribution of a polished metal surface

Flight over a rough surface

Romanesco broccoli www.fourmilab.ch

Mandelbrot set (Wikipedia)

Element of Mandelbrot set (Wikipedia)

Animation

Real space

Fourier space

[1] Y. Z. Hu and K. Tonder, Int. J. Machine Tools Manuf. 32, 83 (1992)

V.A. Yastrebov

[1] Y. Z. Hu and K. Tonder, Int. J. Machine Tools Manuf. 32, 83 (1992)

V.A. Yastrebov

[1] Y. Z. Hu and K. Tonder, Int. J. Machine Tools Manuf. 32, 83 (1992)

V.A. Yastrebov

Effect of parameters: illustration

• Effect of the high frequency cutoff *k*_s

Effect of parameters: illustration

• Effect of the high frequency cutoff *k*_s

Effect of parameters: illustration

• Effect of the high frequency cutoff *k*_s

• Effect of the high frequency cutoff *k*_s

• Effect of the lower frequency cutoff k_l for $k_s/k_l = \text{const}$

Fig. Power spectral density (Fourier space) and corresponding rough surface (real space) for $k_l = 1$, $k_s = 43$

• Effect of the lower frequency cutoff k_l for $k_s/k_l = \text{const}$

Fig. Power spectral density (Fourier space) and corresponding rough surface (real space) for $k_l = 4$, $k_s = 171$

• Effect of the lower frequency cutoff k_l for $k_s/k_l = \text{const}$

Fig. Power spectral density (Fourier space) and corresponding rough surface (real space) for $k_l = 12$, $k_s = 512$

• Effect of the ratio of the higher cutoff to the discretization k_s/N

• Effect of the ratio of the higher cutoff to the discretization k_s/N

• Effect of the discretisation (single asperity)

Displacement Fig. Effect of the mesh on mechanical response

• Data interpolation (Shanon, bi-cubic Bézier surfaces)

Experimental

Smoothed (enriched)

Fig. Bi-cubic Bézier interpolation of an experimental rough surface

[1]Hyun, Robbins, Tribol. Int. (2007) [2] Yastrebov, Durand, Proudhon, Cailletaud, C.R. Mécan. (2011)

V.A. Yastrebov

Effect of parameters

Effect of parameters:

- *k_l* low frequency cutoff
 representativity/normality^[1,2,3]
- *k_s* high frequency cutoff
 smoothness and density of asperities
- $\Box \zeta = k_s / k_l \text{ ratio}^{[3]}$
 - breadth of the spectrum

 $\alpha \sim \zeta^{2H}$

Nayak's parameter α is the central characteristic of roughness in asperity based mechanical models.

- [1] Vallet, Lasseux, Sainsot, Zahouani, Tribol. Int. (2009)
- [2] Yastrebov, Durand, Proudhon, Cailletaud, C.R. Mécan. (2011)
- [3] Yastrebov, Anciaux, Molinari, Phys. Rev. E (2012)
- [4] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. (2015)

Effect of parameters

Effect of parameters:

- *k_l* low frequency cutoff
 representativity/normality^[1,2,3]
- *k_s* high frequency cutoff
 smoothness and density of asperities
- $\Box \zeta = k_s / k_l \text{ ratio}^{[3]}$
 - breadth of the spectrum

 $\alpha \sim \zeta^{2H}$

- Nayak's parameter α is the central characteristic of roughness in asperity based mechanical models.
- [1] Vallet, Lasseux, Sainsot, Zahouani, Tribol. Int. (2009)
- [2] Yastrebov, Durand, Proudhon, Cailletaud, C.R. Mécan. (2011)
- [3] Yastrebov, Anciaux, Molinari, Phys. Rev. E (2012)
- [4] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. (2015)

V.A. Yastrebov

47/109

Effect of parameters

Effect of parameters:

- *k_l* low frequency cutoff
 representativity/normality^[1,2,3]
- *k_s* high frequency cutoff
 smoothness and density of asperities
- $\Box \zeta = k_s / k_l \text{ ratio}^{[3]}$
 - breadth of the spectrum

 $\alpha \sim \zeta^{2H}$

- Nayak's parameter α is the central characteristic of roughness in asperity based mechanical models.
- [1] Vallet, Lasseux, Sainsot, Zahouani, Tribol. Int. (2009)
- [2] Yastrebov, Durand, Proudhon, Cailletaud, C.R. Mécan. (2011)
- [3] Yastrebov, Anciaux, Molinari, Phys. Rev. E (2012)
- [4] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. (2015)

V.A. Yastrebov

48/109

Model and reality

 Yastrebov et al, Three-level multi-scale modeling of electrical contacts sensitivity study and experimental validation, Proceedings of Holm Conference, 2015.

Model and reality

 Yastrebov et al, Three-level multi-scale modeling of electrical contacts sensitivity study and experimental validation, Proceedings of Holm Conference, 2015.

• **Real contact area** between rough surfaces in contact increases with applied pressure

• **Real contact area** between rough surfaces in contact increases with applied pressure

• **Real contact area** between rough surfaces in contact increases with applied pressure

Analytical models

Asperity based models

Greenwood, Williamson. P Roy Soc Lond A Mat (1966)
 Bush, Gibson, Thomas. Wear (1975)
 Mc Cool. Wear (1986)
 Thomas. Rough Surfaces (1999)
 Greenwood. Wear (2006)
 Carbone. J. Mech. Phys. Solids (2009)
 Clavarella, Greenwood, Paggi. Wear (2008)

Persson's model

[8] Persson. J. Chem. Phys. (2001)
[9] Persson. Phys. Rev. Lett. (2001)
[10] Persson, Bucher, Chiaia. Phys. Rev. B (2002)
[11] Müser. Phys. Rev. Lett. (2008)

Cross-link studies

[12] Manners, Greenwood. Wear (2006)
[13] Carbone, Bottiglione. J. Mech. Phys. Solids (2008)
[14] Paggi, Ciavarella. Wear (2010)

Fig. Asperity based models

Analytical models

Asperity based models

Greenwood, Williamson. P Roy Soc Lond A Mat (1966)
 Bush, Gibson, Thomas. Wear (1975)
 Mc Cool. Wear (1986)
 Thomas. Rough Surfaces (1999)
 Greenwood. Wear (2006)
 Carbone. J. Mech. Phys. Solids (2009)
 Clavarella, Greenwood, Paggi. Wear (2008)

Persson's model

[8] Persson. J. Chem. Phys. (2001)
[9] Persson. Phys. Rev. Lett. (2001)
[10] Persson, Bucher, Chiaia. Phys. Rev. B (2002)
[11] Müser. Phys. Rev. Lett. (2008)

Cross-link studies

[12] Manners, Greenwood. Wear (2006)
[13] Carbone, Bottiglione. J. Mech. Phys. Solids (2008)
[14] Paggi, Ciavarella. Wear (2010)

Comparison of models

Asperity based models Persson's model

1. Evolution of the real contact area $A(p_0)$ for $A/A_0 \rightarrow 0$

 $\kappa_{\text{BGT}} = \sqrt{2\pi} \approx 2.5$ according to [2-5] $\kappa_{\text{P}} = \sqrt{8/\pi} \approx 1.6$ according to [6-7]

2. Evolution of the real contact area $A(p_0)$ for $\forall A/A_0$

 $\frac{A}{A_0} = A(p_0, \alpha)/A_0 \text{ according to [2-5]} \qquad \qquad \frac{A}{A_0} = \operatorname{erf}\left(\sqrt{\frac{2}{\langle |\nabla h|^2 \rangle}} \frac{p_0}{E^*}\right) \text{ according to [6-7]}$

[1] Greenwood, Williamson, P Roy Soc Lond A Mat 295 (1966)

- [2] Bush, Gibson, Thomas, Wear 35 (1975)
- [3] Mc Cool, Wear 107 (1986)
- [4] Thomas, Rough Surfaces (1999)
- [5] Greenwood, Wear 261 (2006)

- [6] Persson, J. Chem. Phys. 115 (2001)
- [7] Persson, Phys. Rev. Lett. 87 (2001)
- [8] Persson, Bucher, Chiaia, Phys. Rev. B 65 (2002)
- [9] Müser, Phys. Rev. Lett. 100, (2008)

Numerical methods: BEM vs FEM

Boundary Element Method (BEM)

- Rapid
- Periodic
- Elastic half-space
- Linear homogeneous elasticity

We use a parallel spectral based BEM [1] Stanley & Kato, J Tribol 119 (1997)

V.A. Yastrebov

Finite Element Method (FEM)

- Slow
- Arbitrary boundary conditions
- Finite thickness
- Arbitrary non-linear / heterogeneous material

FFT based BEM I

• Link between contact pressure and vertical displacement in full contact^[1]

$$p(x,y) = \cos(2\pi k_x x/L) \cos(2\pi k_y y/L) \quad \Leftrightarrow$$

$$w(x,y) = \frac{2}{E^* \sqrt{k_x^2 + k_y^2}} \cos(2\pi k_x x/L) \cos(2\pi k_y y/L)$$

$$w = \mathrm{FFT}^{-1}(K : \mathrm{FFT}(p))$$

• Optimization problem^[2]

$$\min F = \int_{A} p[w/2 + g] dA \quad \text{under conditions} \quad p \ge 0, \quad \int_{A} p dA = N$$
$$\min F = \sum f_{ij}[w_{ij}/2 + g_{ij}], \quad f_{ij} \ge 0, \quad \sum f_{ij} = N$$

• Iterative procedure^[1]

 $f^{k+1} = f^k - \nabla_p F^k$, shift and truncate $\tilde{f}_{ij}^{k+1} = \langle f_{ij}^{k+1} + \text{const} \rangle$, $\sum \tilde{f}_{ij}^{k+1} = N$

[1] H.M. Stanley & T. Kato, An FFT-based method for Rough Surface Contact, J Tribol (1997)

[2] J.J. Kalker, Variational Principles of Contact Elastostatics, J Inst Maths Applics (1977)

See also [3] M. Paggi, A. Bemporad, Optimization algorithms for the solution of the frictionless normal contact between rough surfaces, Int J Solids Struct (2015)

V.A. Yastrebov

FFT based BEM II

• Convergence criteria

Increment of functional: $|\Delta F/F| < \varepsilon_F$. Orthogonality: $\sum |f_{ij}g_{ij}|/N\bar{g}_0 < \varepsilon_O$ • Consistent accuracy $\varepsilon_D \sim \varepsilon_O$ $\tilde{f} = \langle f + \text{const} \rangle$ such that $\sum \tilde{f} = N$. Solve by bisection: $|\sum \tilde{f} - N|/N < \varepsilon_D$

> 10 1 Normalized functional 0.1 increment Norms 0.01 0.001 • Gap-pressure 0.0001 orthogonality 1e-05 10 100 1000 Iteration

Example: $L \times L = 4096 \times 4096$, single CPU, only 5(!) minutes on laptop.

V.A. Yastrebov

 $L \times L = 1024 \times 1024$, 100 load increments, 50 surface realisations, H = 0.8

Hu, Tonder. Int. J. Mach. Tool Manuf. 32 (1992)

 $L \times L = 1024 \times 1024$, 100 load increments, 50 surface realisations, H = 0.8

Surface roughness Hu, Tonder. Int. J. Mach. Tool Manuf. 32 (1992)

 $L \times L = 1024 \times 1024$, 100 load increments, 50 surface realisations, H = 0.8

Surface roughness Hu, Tonder. Int. J. Mach. Tool Manuf. 32 (1992)

 $L \times L = 1024 \times 1024$, 100 load increments, 50 surface realisations, H = 0.8

Surface roughness (zoom) Hu, Tonder. Int. J. Mach. Tool Manuf. 32 (1992)

• Conclusions I:

- Effect of α is overestimated in analytical models without interaction
 (confirmed older results^[1])
- Representative surfaces (high k_l) yield higher contact area and less dispersion (yet no convergence is found)

[1] Paggi, Ciavarella. Wear 268 (2010)

• Conclusions I:

- Effect of α is overestimated in analytical models without interaction
 (confirmed older results^[1])
- Representative surfaces (high k_l) yield higher contact area and less dispersion (yet no convergence is found)

[1] Paggi, Ciavarella. Wear 268 (2010)

What about the proportionality coefficient κ?

How to estimate κ ?

$$\frac{A}{A_0} = \frac{\kappa}{\sqrt{\langle |\nabla h|^2 \rangle}} \frac{p_0}{E^*}$$
$$A = A(p_0)$$

$$\kappa = \sqrt{\langle |\nabla h|^2 \rangle} E^* \left\{ \lim_{p_0 \to 0} \frac{\partial A/A_0}{\partial p_0} \right\}$$

Instead, in the literature, the secant is often used at given separation^[1] d/σ or at given pressure^[2] p_0 , *viz*. $\kappa_s(*) = E^* \sqrt{\langle |\nabla h|^2 \rangle} \frac{A}{p_0 A_0}$

Paggi, Ciavarella. Wear 268 (2010)
 Prodanov, Dapp, Müser. Tribol. Lett. 53 (2014)

V.A. Yastrebov

The state of the art: simulations

All simulations are carried out for non-representative surfaces $k_l = 1$, except^[5]

[1] Hyun, Pei, Molinari, Robbins. Phys. Rev. E 70 (2004)

[2] Campañà, Müser. Europhys. Lett. 77 (2007)

[3] Pohrt, Popov. Phys. Rev. Lett. 108 (2012)

[4] Putignano, Afferrante, Carbone, Demelio. J. Mech. Phys. Solids 60 (2012)

*[5] Prodanov, Dapp, Müser. Tribol. Lett. 53 (2014)

All simulations are carried out for non-representative surfaces $k_l = 1$, except^[5]

[1] Hyun, Pei, Molinari, Robbins. Phys. Rev. E 70 (2004)

[2] Campañà, Müser. Europhys. Lett. 77 (2007)

[3] Pohrt, Popov. Phys. Rev. Lett. 108 (2012)

[4] Putignano, Afferrante, Carbone, Demelio. J. Mech. Phys. Solids 60 (2012)

*[5] Prodanov, Dapp, Müser. Tribol. Lett. 53 (2014)

**[6] Paggi, Ciavarella. Wear 268 (2010)

A more rich result with asperity-based and complete models

Fig. Secant-defined κ evolution^[6] with respect to Nayak parameter α

[6] Paggi, Ciavarella. Wear 268 (2010)

A more rich result with asperity-based and complete models

Fig. Secant-defined κ evolution^[6] with respect to Nayak parameter α

A link^[7,8] between Hurst exponent *H*, Nayak parameter α and magnification $\zeta = k_s/k_l$

$$\alpha(H,\zeta) = \frac{3}{2} \frac{(1-H)^2}{H(H-2)} \frac{(\zeta^{-2H}-1)(\zeta^{4-2H}-1)}{(\zeta^{2-2H}-1)^2},$$

[6] Paggi, Ciavarella. Wear 268 (2010)

[7] Bottiglione, Carbone, Mantriota. Tribol. Int. 42 (2009)

[8] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. 52 (2015)

All simulations are carried out for non-representative surfaces $k_l = 1$, except^[5]

[1] Hyun, Pei, Molinari, Robbins. Phys. Rev. E 70 (2004)

[2] Campañà, Müser. Europhys. Lett. 77 (2007)

[3] Pohrt, Popov. Phys. Rev. Lett. 108 (2012)

[4] Putignano, Afferrante, Carbone, Demelio. J. Mech. Phys. Solids 60 (2012)

*[5] Prodanov, Dapp, Müser. Tribol. Lett. 53 (2014)

**[6] Paggi, Ciavarella. Wear 268 (2010)

Results

Results

- Conclusions II:
 - Linearity between the contact area and the pressure is not observed
 - The coefficient κ is hard to evaluate
 - Need to go for a more complete description of the contact area evolution

Fig. Contact area slope evolution

Results

- Conclusions II:
 - Linearity between the contact area and the pressure is not observed
 - The coefficient κ is hard to evaluate
 - Need to go for a more complete description of the contact area evolution

Fig. Contact area slope evolution

• What can we deduce from it?

A phenomenological equation for the contact area evolution^[1,2]:

$$A/A_0 = \left[\beta + \left(\frac{E^* \sqrt{\langle |\nabla h|^2 \rangle}}{\kappa p_0}\right)^{\mu}\right]^{-1/\mu} \xrightarrow{p_0 \to 0} \frac{\kappa p_0}{E^* \sqrt{\langle |\nabla h|^2 \rangle}}$$

- [1] Yastrebov, Anciaux, Molinari, Phys. Rev. E 86 (2012)
- [2] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. 52 (2015)

V.A. Yastrebov

Contact area up to full contact

Real contact area morphology

[1] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. 52 (2015)

Real contact area morphology

 $k_l=1, k_s=32, H=0.8$ Contact pressure, p(x,y)

 $k_i = 1, k_s = 32, H=0.8$ Contact area, a(x,y) $k_l = 16, k_s = 32, H = 0.8$ Contact pressure, p(x,y)

 $k_l = 16, k_s = 32, H = 0.8$ Contact area, a(x,y)

[1] Yastrebov, Anciaux, Molinari, Int. J. Solids Struct. 52 (2015)

V.A. Yastrebov

Objective

- Contact static seal
- Numerical analysis of leakage between rough surfaces in contact
- Effect of roughness and material on sealing properties
 Fluid analysis

Percolation analysis

Applications:

- Seals, gaskets, etc.
- Hydraulic fracturing
- Gas extraction from cracked rocks

Approaches to fluid flow problem

3D FE mesh of residual volume
 + full 3D CFD analysis

OR

2D Reynolds equation for viscous Poiseuille flow

$$\nabla \cdot (h^3(x,y)\nabla p) = 0, \quad q = \frac{h^3(x,y)}{12\mu}\nabla p$$

• Transmissivity

$$K = Q_v \frac{L_x}{L_y} \frac{\mu}{\Delta p}$$

3D CFD (Abaqus) Viscous flow (**Z-set**, in-house FE software)

[1] J. Durand, PhD Thesis (2012)

Approaches to fluid flow problem

3D FE mesh of residual volume
 + full 3D CFD analysis

OR

2D Reynolds equation for viscous Poiseuille flow

$$\nabla \cdot (h^3(x,y)\nabla p) = 0, \quad q = \frac{h^3(x,y)}{12\mu}\nabla p$$

• Transmissivity

$$K = Q_v \frac{L_x}{L_y} \frac{\mu}{\Delta p}$$

Fig. 3D CFD and Reynolds simulations (flow rate)

Fig. Fluid flow for rough surfaces with $k_l = 64 > 16 > 4 > 1$, *i.e.* for system sizes $L \times L = 4096 > 256 > 16 > 1$.

87/109

Four phases:

- I Transitional 1
- II Stationary
- III Transitional 2 – Percolation
- IV No-leakage

Based on simulations on mesh $L \times L = 2048 \times 2048$ for all combinations of $k_l = 1, 4, 16 \times k_s = 32, 64, 128$ $\times H = 0.3, 0.5, 0.8 \times 5$ realizations, **1.9 Tb(!)** of data

Four phases:

I Transitional 1

reduces if Gaussianity increases ($k_l \gg 1$)

II Stationary

exponential decrease $K \sim \exp(-\gamma A')$ $\gamma \approx 22 - 25$

III Transitional 2 – Percolation

at $A'_{perc} \approx 35 - 40\%$ [1,2,3]

IV No-leakage

 $A'_{perc} \approx 40.0\%$ [1] Stauffer, Aharony, Introduction to percolation theory (2003) $A'_{perc} \approx 42.5\%$ [2] Dapp, Lücke, Persson, Müser, *Phys. Rev. Lett.* 108 (2012) $A'_{perc} \approx 35.4\%$ [3] Putignano, Afferante, Carbone, Demelio, *Tribol. Int.* 64 (2013).

Based on simulations on mesh $L \times L = 2048 \times 2048$ for all combinations of $k_l = 1, 4, 16 \times k_s = 32, 64, 128$ $\times H = 0.3, 0.5, 0.8 \times 5$ realizations, **1.9 Tb(!)** of data

Phenomenological model for sealing

• Transmissivity

$$K \sim \frac{Q}{\Delta P}$$

• Flow rate with respect to contact area fraction

 $Q \sim \langle h^2 \rangle^{3/2} \exp(-\gamma A'), \quad \gamma \approx 22 - 25$

• Contact area evolution with pressure (up to 35%)^[1]

$$\boldsymbol{A'} = \left[\beta + \left(\frac{E^* \sqrt{\langle |\nabla h|^2 \rangle}}{\kappa p_0}\right)^{\mu}\right]^{-1/\mu} \xrightarrow{p_0 \to 0} \frac{\kappa p_0^{[\mathbf{2}]}}{E^* \sqrt{\langle |\nabla h|^2 \rangle}}$$

 $A' = A/A_0$ relative contact area, E^* effective elastic modulus, p_0 external pressure, $\sqrt{\langle |\nabla h|^2 \rangle}$ rms slope and $\beta \approx 0.21$, $\mu \approx 0.45$, $\kappa \approx \sqrt{2\pi}$ are three constants.

• For stationary regime:

$$K \sim \frac{\langle h^2 \rangle^{3/2}}{\Delta P} \exp\left(-\gamma \left[\beta + \left(\frac{E^* \sqrt{\langle |\nabla h|^2 \rangle}}{\kappa p_0}\right)^{\mu}\right]^{-1/\mu}\right)$$

Yastrebov, Anciaux, Molinari, *Phys. Rev. E* 86 (2012)
 Bush, Gibson, Thomas, *Wear* 35 (1975)

- Not accurate detection of the percolation limit in fluid simulations
- Need a cluster analysis
- Critical junction approach
- Percolation limit^[1,2,3]

 $A'_{\rm perc} \approx 35 - 40\%$

in contrast to the overlap model $A'_{overlap} = 50\%$

 $\begin{array}{l} A_{\rm perc}^{\prime} \approx 40.0\% \quad [1] \mbox{ Stauffer, Aharony, Introduction } Fig. \ Percolation through non-percolating cluster to percolation theory (2003) } \\ A_{\rm perc}^{\prime} \approx 42.5\% \quad [2] \mbox{ Dapp, Lücke, Persson, Müser, } \\ Phys. Rev. Lett. 108 (2012) \\ A_{\rm perc}^{\prime} \approx 35.4\% \quad [3] \mbox{ Putignano, Afferante, Carbone, } \\ Demelio. Tribol. Int. 64 (2013). \end{array}$

- Not accurate detection of the percolation limit in fluid simulations
- Need a cluster analysis
- Critical junction approach
- Percolation limit^[1,2,3]

 $A'_{\rm perc} \approx 35 - 40\%$

in contrast to the overlap model $A'_{\rm overlap} = 50\%$

 $A'_{\text{perc}} \approx 40.0\%$ [1] Stauffer, Aharony, Introduction to percolation theory (2003) $A'_{\text{perc}} \approx 42.5\%$ [2] Dapp, Lücke, Persson, Müser, Phys. Rev. Lett. 108 (2012) $A'_{\text{perc}} \approx 35.4\%$ [3] Putignano, Afferante, Carbone, Demelio. Tribol. Int. 64 (2013).

Fig. Detection of contact clusters and search for an infinite cluster

V.A. Yastreboy

- Not accurate detection of the percolation limit in fluid simulations
- Need a cluster analysis
- Critical junction approach
- Percolation limit^[1,2,3]

 $A'_{\rm perc} \approx 35 - 40\%$

in contrast to the overlap model $A'_{overlap} = 50\%$

 Back to discrete percolation^[4,5]

Fig. Hydrostatic pressure cells, contact zones (black) and fluid flux

[4] Isichenko, Rev. Mod. Phys. 64 (1992)[5] Stauffer, Aharony, Introduction to percolation theory (2003)

V.A. Yastrebov

- Not accurate detection of the percolation limit in fluid simulations
- Need a cluster analysis
- Critical junction approach
- Percolation limit^[1,2,3]

 $A'_{\rm perc} \approx 35 - 40\%$

in contrast to the overlap model $A'_{overlap} = 50\%$

 Back to discrete percolation^[4,5]

Fig. A graph connecting hydrostatic pressure cells

[4] Isichenko, Rev. Mod. Phys. 64 (1992)[5] Stauffer, Aharony, Introduction to percolation theory (2003)

Conclusions III

- Take care of surface representativity $k_l \gg 1$, i.e. $\lambda_l \ll L$.
- Different regimes of leakage
- For stationary regime

 $Q \sim \langle h^2 \rangle^{3/2} \exp(-\gamma A'), \quad \gamma \approx 22-25,$

Q - flow rate, A^\prime - contact area fraction.

■ Transmissivity (*K*) evolution with pressure (*p*₀)

$$K \sim \frac{\langle h^2 \rangle^{3/2}}{\Delta P} \exp\left(-\gamma \left[\beta + \left(\frac{E^* \sqrt{\langle |\nabla h|^2 \rangle}}{\kappa p_0}\right)^{\mu}\right]^{-1/\mu}\right)$$

 $\Delta P \text{ - fluid pressure drop, } E^* \text{ - effective elastic modulus, } \sqrt{\langle |\nabla h|^2 \rangle} \text{ - rms slope.}$

Percolation limit

$$A'_{\rm perc} \approx 35 - 40\%$$
 < 50% = $A'_{\rm overlap}$

From continuum percolation to percolation on lattice

Towards strong coupling I

- Weak coupling: solve solid → solve fluid
- Strong coupling: solve solid AND fluid
 - ★ Iterative scheme:
 - solve solid \rightarrow solve fluid \rightarrow solid \rightarrow fluid \rightarrow ...
 - Data exchange:
 - **solid** \rightarrow fluid: gap g(x, y)
 - fluid \rightarrow solid: hydrostatic pressure p(x, y)

• Exponential convergence

Towards strong coupling II

- Exponential convergence
- Issues
 - Trapped incompressible fluid $V^i = \int g(x, y) dA = \text{const}$
 - Coupling beyond percolation limit $\nabla p = 0$

- Hydrostatic pressure drop 500 bar (50 MPa)
- Young's modulus 2 GPa
- Characteristic size 1 cm

- Hydrostatic pressure drop 500 bar (50 MPa)
- Young's modulus 2 GPa
- Characteristic size 1 cm

- Hydrostatic pressure drop 500 bar (50 MPa)
- Young's modulus 2 GPa
- Characteristic size 1 cm

- Hydrostatic pressure drop 500 bar (50 MPa)
- Young's modulus 2 GPa
- Characteristic size 1 cm

- Hydrostatic pressure drop 500 bar (50 MPa)
- Young's modulus 2 GPa
- Characteristic size 1 cm

- Hydrostatic pressure drop 500 bar (50 MPa)
- Young's modulus 2 GPa
- Characteristic size 1 cm

Conclusion

- Mechanical contact is critical for sealing problem
- Representativity $\Leftrightarrow k_l > 4$
- Weak coupling: complete analysis
- Iterative strong coupling scheme works well
- Strong coupling may be important
- But the effect of trapped fluid should be more critical

Conclusion

- Mechanical contact is critical for sealing problem
- Representativity $\Leftrightarrow k_l > 4$
- Weak coupling: complete analysis
- Iterative strong coupling scheme works well
- Strong coupling may be important
- But the effect of trapped fluid should be more critical

Thank you for your attention!

<vladislav.yastrebov@mines-paristech.fr> www.yastrebov.fr

The state of the art

- Lattice models^[1,2]
- Average separation analysis for stationary regime

use asperity-based or Persson models^[3,4]

- Critical constriction or critical junction approach for *near percolation regime*^[4,5]
- Complete analysis^[6]

[1] Plouraboué, Geoffroy, Prat. Phys. Fluids 16 (2004)

- [2] Flukiger, Plouraboué, Prat. Phys. Rev. E 77 (2008)
- [3] Bottiglione, Carbone, Mantriota. Tribol. Int. 42 (2009)
- [4] Lorenz, Persson. Eur. Phys. J. E 31 (2010)
- [5] Dapp, Müser. Europhys. Lett. 109 (2015)

[6] Dapp, Lücke, Persson, Müser. Phys. Rev. Lett. 108 (2012)

Fig. Flow density overlap VS elastic models^[6]

Mechanical contact VS overlap model

[1] Dapp, Lücke, Persson, Müser, Phys. Rev. Lett. 108 (2012)

■ Contact of elastic regular wavy surface^[1] (revisited^[2,3])

- [1] Johnson, Greenwood, Higginson, Int. J. Mech. Sci. 27 (1985)
- [2] Yastrebov, Anciaux, Molinari, Tribol. Lett. 56 (2014)
- [3] Dapp, Müser, Europhys. Lett. 109 (2015)

■ Contact of elastic regular wavy surface^[1] (revisited^[2,3])

- [1] Johnson, Greenwood, Higginson, Int. J. Mech. Sci. 27 (1985)
- [2] Yastrebov, Anciaux, Molinari, Tribol. Lett. 56 (2014)
- [3] Dapp, Müser, Europhys. Lett. 109 (2015)

■ Contact of elastic regular wavy surface^[1] (revisited^[2,3])

- [1] Johnson, Greenwood, Higginson, Int. J. Mech. Sci. 27 (1985)
- [2] Yastrebov, Anciaux, Molinari, Tribol. Lett. 56 (2014)
- [3] Dapp, Müser, Europhys. Lett. 109 (2015)

■ Contact of elastic regular wavy surface^[1] (revisited^[2,3])

- [1] Johnson, Greenwood, Higginson, Int. J. Mech. Sci. 27 (1985)
- [2] Yastrebov, Anciaux, Molinari, Tribol. Lett. 56 (2014)
- [3] Dapp, Müser, Europhys. Lett. 109 (2015)

Thank you for your attention!

<vladislav.yastrebov@mines-paristech.fr> www.yastrebov.fr