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Boundary value problem in elasticity

Reference and current configurations

x = X + u

Balance equation (strong form)

∇ · σ
=

+ ρf
v

= 0,∀x ∈ Ωi

Displacement compatibility

ε
=

=
1
2

(∇u + u∇)

Constitutive equation

σ
=

= W′(ε
=

)

Boundary conditions

Dirichlet: u = u0,∀x ∈ Γu

Neumann: n · σ
=

= t0,∀x ∈ Γf
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Intuitive conditions

1 No penetration

Ω1(t) ∩Ω2(t) = ∅

2 No adhesion

n · σ
=
· n ≤ 0,∀x ∈ Γi

c

3 No shear stress

n · σ
=
· (I − n ⊗ n) = 0,∀x ∈ Γi

c
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Two bodies in contact
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Gap function

Gap function g

gap = – penetration
asymmetric function
defined for
• separation g > 0
• contact g = 0
• penetration g < 0
governs normal contact

Master and slave split
Gap function is determined for all
slave points with respect to the
master surface

g=0

g<0

g>0

penetration

non-contact

contact

n
n
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Gap between a slave point and a master surface



Gap function

Gap function g

gap = – penetration
asymmetric function
defined for
• separation g > 0
• contact g = 0
• penetration g < 0
governs normal contact

Master and slave split
Gap function is determined for all
slave points with respect to the
master surface

Normal gap

gn = n ·
[
rs − ρ(ξπ)

]
,

n is a unit normal vector, rs
slave point, ρ(ξπ) projection
point at master surface
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Frictionless or normal contact conditions

No penetration
Always non-negative gap

g ≥ 0

No adhesion
Always non-positive contact pressure

σ∗n ≤ 0

Complementary condition
Either zero gap and non-zero pressure, or
non-zero gap and zero pressure

g σn = 0

No shear transfer (automatically)

σ∗∗t = 0

σ∗n = (σ
=
· n) · n = σ

=
: (n ⊗ n)

σ∗∗t = σ
=
· n − σnn = n · σ

=
·

(
I
=
− n ⊗ n

)

g

n

0

Scheme explaining normal
contact conditions
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Frictionless or normal contact conditions

In mechanics:

Normal contact conditions
≡

Frictionless contact conditions
≡

Hertz1 -Signorini [2] conditions
≡

Hertz1 -Signorini [2]-Moreau [3] conditions
also known in optimization theory as

Karush [4]-Kuhn [5]-Tucker [6] conditions

g
 =

 0
,  

 n
<

 0
co

nt
ac

t

non-contact

restricted

regions

g

n

g > 0,   n = 0

0

Improved scheme explaining
normal contact conditions

g ≥ 0, σn ≤ 0, gσn = 0

1Heinrich Rudolf Hertz (1857–1894) a German physicist who first formulated and solved the frictionless contact
problem between elastic ellipsoidal bodies.
2Antonio Signorini (1888–1963) an Italian mathematical physicist who gave a general and rigorous mathematical
formulation of contact constraints.
3Jean Jacques Moreau (1923) a French mathematician who formulated a non-convex optimization problem based
on these conditions and introduced pseudo-potentials in contact mechanics.
4William Karush (1917–1997), 5Harold William Kuhn (1925) American mathematicians,
6Albert William Tucker (1905–1995) a Canadian mathematician.
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Contact problem

≈ Problem

Find such contact pressure

p = −n · σ
=
· n ≥ 0

which being applied at Γ1
c and Γ2

c results in

x1 = x2,∀x1
∈ Γ1

c , x2
∈ Γ2

c

and evidently

Ω1(t) ∩Ω2(t) = ∅

Unfortunately, we do not know Γ1
c in advance,

it is also an unknown of the problem.

Related problem
Suppose that we know p on Γc

Then what is the corresponding displacement field u in Ωi?
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Evidence of friction

Existence of frictional resistance
is evident

Independence of the nominal
contact area

Think about adhesion and
introduce a threshold in the
interface τc

Globally:

- stick: T < Tc(N)

- slip: T = Tc(N)

From experiments:

- Threshold Tc ∼ N
- Friction coefficient f = |N/Tc|

Locally

- stick: στ < τc(σn)

- slip: στ = fσn

Rectangle on a flat surface
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Evidence of friction

Existence of frictional resistance
is evident

Independence of the nominal
contact area

Think about adhesion and
introduce a threshold in the
interface τc

Globally:

- stick: T < Tc(N)

- slip: T = Tc(N)

From experiments:

- Threshold Tc ∼ N
- Friction coefficient f = |N/Tc|

Locally

- stick: στ < τc(σn)

- slip: στ = fσn

Torque

Rectangle on a flat surface
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Types of contact

Known contact zone

conformal geometry
flat-to-flat, cylinder in a hole
initially non-conformal
geometry but huge
pressure resulting in full
contact

Unknown contact zone
general case

Point and line contact

Frictionless
conservative, energy minimization
problem

Frictional
path-dependent solution, from the
first touch to the current moment

Example
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Analogy with boundary conditions
Flat geometry

Compression of a cylinder

Frictionless uz = u0

Full stick conditions u = u0ez

Rigid flat indenter uz = u0
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surface y = f (x) is retained by
high pressure

(X + u) · ey = f ((X + u) · ex)

V.A. Yastrebov 20/18



Analogy with boundary conditions
Flat geometry

Compression of a cylinder

Frictionless uz = u0

Full stick conditions u = u0ez

Rigid flat indenter uz = u0

Curved geometry

Polar/spherical coordinates
ur = u0

If frictionless contact on rigid
surface y = f (x) is retained by
high pressure

(X + u) · ey = f ((X + u) · ex)

Transition to finite friction

≈ From full stick, decrease f
by keeping uz = 0 and by
replacing in-plane Dirichlet BC
by in-plane Neumann BC
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Analogy with boundary conditions II

In general

Type I: prescribed tractions

p(x, y), τx(x, y), τy(x, y)

Type II: prescribed displacements

u(x, y)

Type III: tractions and displacements

uz(x, y), τx(x, y), τy(x, y) or

p(x, y),ux(x, y),uy(x, y)

Type IV: displacements and relation between tractions

uz(x, y), τx(x, y) = ±fp(x, y)
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Concentrated forces

Normal force: in-plane stresses and displacements (plane strain)

σr = − 2N
π

cos(θ)
r or σx = − 2N

π
x2y

(x2+y2)2 , σy = − 2N
π

y3

(x2+y2)2 , σxy = − 2N
π

xy2

(x2+y2)2

ur =
1 + ν
πE

N cos(θ) [2(1 − ν) ln(r) − (1 − 2ν)θ tan(θ)] + C cos(θ)

uθ =
1 + ν
πE

N sin(θ) [2(1 − ν) ln(r) − 2ν + (1 − 2ν)(1 − 2θ ctan(θ))]−C sin(θ)

Tangential force

σr = 2T
π

sin(θ)
r or σx = − 2T

π
x3

(x2+y2)2 , σy = − 2T
π

xy2

(x2+y2)2 , σxy = − 2T
π

x2y
(x2+y2)2

ur = −
1 + ν
πE

T sin(θ) [2(1 − ν) ln(r) − (1 − 2ν)θctan(θ)] − C sin(θ)

uθ =
1 + ν
πE

T cos(θ) [2(1 − ν) ln(r) − 2ν + (1 − 2ν)(1 + 2θ tan(θ))] + C cos(θ)



Distributed load

Distributed tractions p(x)dx = dN(x),
τ(x)dx = dT(x)

Use superposition principle for the stress
state and for displacements

Tractions on the surface

σx(x, y) = −
2y
π

a∫
−b

p(s)(x − s)2 ds
((x − s)2 + y2)2 −

2
π

a∫
−b

τ(s)(x − s)3 ds
((x − s)2 + y2)2

σy(x, y) = −
2y3

π

a∫
−b

p(s) ds
((x − s)2 + y2)2 −

2y2

π

a∫
−b

τ(s)(x − s) ds
((x − s)2 + y2)2

σxy(x, y) = −
2y2

π

a∫
−b

p(s)(x − s) ds
((x − s)2 + y2)2 −

2y
π

a∫
−b

τ(s)(x − s)2 ds
((x − s)2 + y2)2
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Distributed load

Distributed tractions p(x)dx = dN(x),
τ(x)dx = dT(x)

Use superposition principle for the stress
state and for displacements

Consider displacements on the surface

Tractions on the surface

ux(x, 0) = −
(1 − 2ν)(1 + ν)

2E


x∫

−b

p(s) ds −

a∫
x

p(s) ds

−2(1 − ν2)
πE

a∫
−b

τ(s) ln |x−s| ds+C1



Distributed load

Distributed tractions p(x)dx = dN(x),
τ(x)dx = dT(x)

Use superposition principle for the stress
state and for displacements

Consider displacements on the surface

Or rather their derivatives along the surface

Tractions on the surface

ux(x, 0) = −
(1 − 2ν)(1 + ν)

2E


x∫
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x

p(s) ds
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πE

a∫
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ux,x(x, 0) = −
(1 − 2ν)(1 + ν)

E
p(x) −

2(1 − ν2)
πE

a∫
−b

τ(s)
x − s

ds

Near-surface stress state



Distributed load

Distributed tractions p(x)dx = dN(x),
τ(x)dx = dT(x)
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Distributed load

Distributed tractions p(x)dx = dN(x),
τ(x)dx = dT(x)

Use superposition principle for the stress
state and for displacements

Consider displacements on the surface

Or rather their derivatives along the surface

Tractions on the surface

uy(x, 0) =
(1 − 2ν)(1 + ν)

2E


x∫

−b

τ(s) ds −

a∫
x

τ(s) ds

−2(1 − ν2)
πE

a∫
−b

p(s) ln |x−s| ds+C2

uy,x(x, 0) =
(1 − 2ν)(1 + ν)

E
τ(x) −

2(1 − ν2)
πE

a∫
−b

p(s)
x − s

ds



Rigid stamp problem

Link displacement derivatives with tractions

a∫
−b

τ(s)
x − s

ds = −
π(1 − 2ν)
2(1 − ν)

p(x) −
πE

2(1 − ν2)
ux,x(x, 0)

a∫
−b

p(s)
x − s

ds =
π(1 − 2ν)
2(1 − ν)

τ(x) −
πE

2(1 − ν2)
uy,x(x, 0)

If in contact interface we can prescribe p,ux,x or τ,uy,x, then the problem
reduces to

a∫
−b

F (x)
x − s

ds =U(x)

The general solution (case a = b):

F (x) =
1

π2
√

a2 − x2

a∫
−a

√
a2 − x2U(s) ds

x − s
+

C

π
√

a2 − x2
, C =

a∫
−a

F (s)ds
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The general solution (case a = b):

F (x) =
1

π2
√

a2 − x2

a∫
−a

√
a2 − x2U(s) ds

x − s
+

C

π
√

a2 − x2
, C =

a∫
−a

F (s)ds

flat frictionless punch, consider P.V.
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Three-dimensional problem

Analogy to Flamant’s problem

Potential functions of Boussinesq

Boussinesq problem
concentrated normal force

Cerruti problem
concentrated tangential force

Displacements decay as ∼ r−1

ur(x, y, 0) = −
1 − 2ν
4πG

N√
x2 + y2

uz(x, y, 0) =
1 − ν
4πG

N√
x2 + y2

Stress decay as ∼ r−2

Superposition principle
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Classical contact problems

Various problems with rigid flat stamps:
circular, elliptic, frictionless, full-stick, finite
friction

Hertz theory
normal frictionless contact of elastic solids
Ei, νi and zi = Aix2 + Biy2 + Cixy, i = 1, 2

Wedges (coin) and cones

Circular inclusion in a conforming hole
Steuermann, 1939,Goodman, Keer, 1965

Frictional indentation z ∼ xn

Incremental approach Mossakovski, 1954

self-similar solution Spence, 1968, 1975

Adhesive contact Johnson et al, 1971, 1976

Contact with layered materials (coatings)

Elastic-plastic and viscoelastic materials

Sliding/rolling of non-conforming bodies
Cattaneo, 1938,Mindlin, 1949,Galin, 1953,Goryacheva, 1998
Note: ur ∼ (1 − 2ν)/G, so if (1 − 2ν1)/G1 = (1 − 2ν2)/G2 tangential
tractions do not change normal ones

K.L. Johnson

I.G. Goryacheva

V.L. Popov
V.A. Yastrebov 34/18



� Next. . .




