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Boundary value problem in elasticity

m Reference and current configurations ™

x=X+u 4 v,
I
m Balance equation (strong form) .
Q
V.g+pf =0,¥xe r
= "0 u 1" 1
m Displacement compatibility 2
c
= Ly Q? Ve
£= 5( u+uv) L, f3
m Constitutive equation
a=W(g
- - Two bodies in contact
m Boundary conditions

Dirichlet: u = u°,Vx €T,

Neumann: - ¢ = £, Vx € I}
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Intuitive conditions

No penetration v,
L
QI HNQ* ) =0 Y
Ql
No adhesion L r
: 2
n-o-n<0,Vx el L
) @ L
No shear stress “ =
n-g-(I-n®n=0vYxel;

Two bodies in contact
2
-
Intuitive contact conditions for frictionless and nonadhesive contact
V.A. Yastrebov

5/18



Intuitive conditions

No penetration v,
L
QI HNQ* ) =0 Y
Ql
No adhesion L r
: 2
n-o-n<0,Vx el I
) @ L
No shear stress “ =

n-g-(I-n®n=0vYxel;

Two bodies in contact

Intuitive contact conditions for frictionless and nonadhesive contact
V.A. Yastrebov

6/18



m Gap function g

B gap = — penetration
B asymmetric function
m defined for
e separation ¢ > 0
e contact ¢ = 0
e penetration ¢ <0
m governs normal contact

m Master and slave split
Gap function is determined for all
slave points with respect to the
master surface

T g>0
non-contact 4

\nooe g=0

n4 71\ contact

g<0

penetration

Gap between a slave point and a master surface



m Gap function g

_ . T g>0
B gap = - penetration nofcomac[ 4
B asymmetric function oo ¢=0
B defined for ny4 71\ contact

e separation ¢ > 0
e contact ¢ = 0
e penetration ¢ <0
m governs normal contact

g<0

penetration

Gap between a slave point and a master surface

m Master and slave split . r
Gap function is determined for all 4 ’
slave points with respect to the = na4

3
master surface o pE)
m Normal gap
gn=1- [L ~p(én) ] ’ Definition of the normal gap

n is a unit normal vector, r,
slave point, p(&) projection
point at master surface



Frictionless or normal contact conditions

AN GnA

m No penetration 0

Always non-negative gap

oy

g=0

m No adhesion
Always non-positive contact pressure

o, <0

n —
m Complementary condition
Either zero gap and non-zero pressure, or

Scheme explaining normal
non-zero gap and zero pressure

contact conditions

g0,=0
m No shear transfer (automatically)
o7 =0
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Frictionless or normal contact conditions

N O
. n
= No penetration 0
Always non-negative gap non-contact -
>0,0,=0
g > 0 o g n
. _V
m No adhesion S g
Always non-positive contact pressure 5o restricted
ol i
region:
gt <0 o0 egions

m Complementary condition
Either zero gap and non-zero pressure, or

Improved scheme explaining
non-zero gap and zero pressure

normal contact conditions
g0,=0

m No shear transfer (automatically)

V.A. Yastrebov 10/18



Frictionless or normal contact conditions

In mechanics: > Op!
Normal contact conditions 0 non-contact ~
= g> 0, G, = 0
Frictionless contact conditions He
= 6
HertzL-Signorini, 2! conditions %d restricted
_ ) 'D'D regions

HertzL-Signorini,'-Moreauy" conditions
also known in optimization theory as

Karusha""-Kuhn.5)-Tucker, o) conditions Improved scheme exp.l aming
normal contact conditions

8 > O/ on < 0/ 80n = 0

Heinrich Rudolf Hertz (1857-1894) a German physicist who first formulated and solved the frictionless contact
problem between elastic ellipsoidal bodies.

2 Antonio Signorini (1888-1963) an Italian mathematical physicist who gave a general and rigorous mathematical
formulation of contact constraints.

Jean Jacques Moreau (1923) a French mathematician who formulated a non-convex optimization problem based
on these conditions and introduced pseudo-potentials in contact mechanics.

4William Karush (1917-1997), 5Harold William Kuhn (1925) American mathematicians,
6 Albert William Tucker (1905-1995) a Canadian mathematician.
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Contact problem

~ Problem

Find such contact pressure A

Ly
p=-n-g-nz0 Q
. . . . I,
which being applied at I'! and I'”? results in r
x' =2’ Vx' €Tl €7 5 .
2 B
and evidently @ o I <

QHNQ*H) =0

Two bodies in contact

m Unfortunately, we do not know I'! in advance,
it is also an unknown of the problem.

m Related problem
Suppose that we know p on I,

Then what is the corresponding displacement field » in O'?
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Contact problem

~ Problem

Find such contact pressure A

Ly
p=-n-g-nz0 Q
. . . . I,
which being applied at I'! and I'”? results in r
x' =2’ Vx' €Tl €7 5 .
2 B
and evidently @ o I <

QHNQ*H) =0

Two bodies in contact

m Unfortunately, we do not know I'! in advance,
it is also an unknown of the problem.

m Related problem
Suppose that we know p on I,

Then what is the corresponding displacement field » in O'?

Q This afternoon

V.A. Yastrebov



Evidence of friction

m Existence of frictional resistance [

is evident T
A
m Independence of the nominal h I Ny
contact area

o
Q Think about adhesion and Li
introduce a threshold in the
interface .

m Globally:
-stick: T' < T.(N)
“slip: T = T.(N) Rectangle on a flat surface
m From experiments:
- Threshold T, ~ N
- Friction coefficient f = [N /T fl---7
m Locally

local global
0,0, r,N
f=max(lo./o,))  f=max(T/NI)

=~

- stick: 0, < 1.(0,)

-slip: 0, = fo,
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m Existence of frictional resistance [

is evident T
A
m Independence of the nominal h I Ny
contact area

o
Q Think about adhesion and Li
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local global
0,0, r,N
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=~

- stick: 0, < 1.(0,)

-slip: 0, = fo,

m Q Torque
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Types of contact

m Known contact zone

m conformal geometry
flat-to-flat, cylinder in a hole

m initially non-conformal
geometry but huge
pressure resulting in full
contact

m Unknown contact zone
general case

m Point and line contact

m Frictionless
conservative, energy minimization
problem

m Frictional
path-dependent solution, from the
first touch to the current moment

Q Example
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Types of contact

m Known contact zone

m conformal geometry
flat-to-flat, cylinder in a hole

m initially non-conformal EA
geometry but huge &
pressure resulting in full
contact

K
Uy o /
J

m Unknown contact zone
general case

m Point and line contact

m Frictionless
conservative, energy minimization

problem ‘o

m Frictional
path-dependent solution, from the
first touch to the current moment

Q Example
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Analogy with boundary conditions

Flat geometry

Uy
m Compression of a cylinder l—&d—\n_g]_

m Frictionless 1. = 1

. o deformabl

m Full stick conditions u = 1e_ e

m Rigid flat indenter 1. = 1y .
T1g

frictionless full stick
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Analogy with boundary conditions

Flat geometry
m Compression of a cylinder @ u()
m Frictionless 1. = 1
m Full stick conditions u = 1ge,

m Rigid flat indenter 1. = 1y

Curved geometry

'Y ..
m Polar/spherical coordinates rigid
U, = iy

m If frictionless contact on rigid
surface i = f(x) is retained by
high pressure

X+w-e =f(X+u) E.\»)Q
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Analogy with boundary conditions

Flat geometry

Uy
m Compression of a cylinder !—&d—\n_gj_

m Frictionless 1. = 1

m Full stick conditions u = 1ge, S
m Rigid flat indenter 1. = 1y
rigid
Curved geometry
m Polar/spherical coordinates . $ . o g
U = U
m If frictionless contact on rigid
surface i = f(x) is retained by
high pressure [ 1 |
frictionless full stick
X+u)-e =f(X+u)- g\,)Q
Transition to finite friction Sl

[ Qz From full stick, decrease f
by keeping 1. = 0 and by
replacing in-plane Dirichlet BC
by in-plane Neumann BC
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Analogy with boundary conditions II

In general

m Type I: prescribed tractions Q
P, ), (%, y), Ty (%, y)
m Type II: prescribed displacements
u(x,y)
m Type III: tractions and displacements
uz(x, ), Te(x, y), Ty(x, y) or
p(x,y), ux(x,y), u,(x,y)
m Type IV: displacements and relation between tractions

llz(X, 1/)/ TX(X, }/) = ifp(x, 1/)
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To be continued. . .




Concentrated forces

m Normal force: in-plane stresses and displacements (plane strain)
2N cos(0) _aN 2%y w_P N _ WP
N cos — — _2N__ ¥ — _2N_ Y
—R T Or Oy =T ey, Oy = T e O S T

! +Et N cos(0) [2(1 —v) In(r) — (1 — 2v)O tan(O)] + C cos(6)

0, =

u, =

Ug = 1717EN sin(0) [2(1 — v) In(r) — 2v + (1 — 2v)(1 — 20 ctan(6))]—C sin(6)

m Tangential force
2T sin(0) _ a8 A _ ot Yy
~ r Orox=—7 222! Oy = —7 2422 Oxy = =7 22

U, = —%Tsin(@) [2(1 = v)In(r) — (1 — 2v)Bctan(B)] — Csin(6)

Ug = %TCOS(Q) [21 =v)In(r) = 2v + (1 — 2v)(1 + 26 tan(6))] + C cos(6)

o, =

"y _ K




Distributed load

m Distributed tractions p(x)dx = dN(x),

T(x)dx = dT(x) . m
m Use superposition principle for the stress [
state and for displacements ? e -

y

Tractions on the surface

ox(x,y) = —

2y [ pOE-sPds 2 [ Te)x—s ds

) (=92 + 22 Ef ((x = s +y2)2
—b -b

20 [ pe)ds 2P [ a(s)x—s)ds

) (=924 ) (k=92 + R

—b -b

(7[/(3{, y) =

a a

2y pe)x—s)ds 2y [ 1(s)(x —s)ds
iy == | ey = Gy

—b -b



Distributed load

m Distributed tractions p(x)dx = dN(x),

T(x)dx = dT(x) o) m
m Use superposition principle for the stress [
state and for displacements v = B

(x.y)

y

Tractions on the surface
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Distributed load

m Distributed tractions p(x)dx = dN(x),

T(x)dx = dT(x) - m
m Use superposition principle for the stress
state and for displacements o & ¥

m Consider displacements on the surface s

(xy)

y
Tractions on the surface

f ds—fp ds]— (1-v) f ) In |x—s| ds+C;

-b

1-2v)1+v)

(¥, 0) =~




Distributed load

m Distributed tractions p(x)dx = dN(x),
T(x)dx = dT(x)

p(x)
m Use superposition principle for the stress m

state and for displacements b = “

X

m Consider displacements on the surface s

m Or rather their derivatives along the surface &

y
Tractions on the surface

uy(x,0) = —% f )ds — fp 201-v) fT(s) In |x—s| ds+C;
-b
: __(1—2v)(1+v) f (s
Uy (x,0) = 3 p(x T

-b

QNear—surface stress state



Distributed load

m Distributed tractions p(x)dx = dN(x),
T(x)dx = dT(x)

p(x)
m Use superposition principle for the stress m

state and for displacements b = “

X

m Consider displacements on the surface s

m Or rather their derivatives along the surface &

y
Tractions on the surface
a

, ) 2(1 —?
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Distributed load

m Distributed tractions p(x)dx = dN(x),
T(x)dx = dT(x)

p(x)
m Use superposition principle for the stress m

state and for displacements b = “

X

m Consider displacements on the surface s

m Or rather their derivatives along the surface &

y
Tractions on the surface

_ 2y ) 1
u,(x,0) = (1 2v){1 +v) f 5) ds — fr(s) } XA (s) In |[x—s| ds+C,
b x
Loyl 0 208 )
Uy, (x,0) = E 7(x) p— s

-b



Rigid stamp problem

m Link displacement derivatives with tractions

a

(s) ,  m(1-2v) nE
fx s ds = 7(] - p(x) — 27(1 —7) Uy (x,0)

b

[ p6) . n-2v) nE ‘
fx . ds = WT(X) - mlt}/,x(x,())
b

m If in contact interface we can prescribe p, u, . or 7, u,,,, then the problem

reduces to )
f ¢(X)LS =U(x)
xX—s

b
m The general solution (case 2 = b):

F) = ﬂz_,‘zf Va2 = 2 U(s) fgf

x—s 22— 2
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m Link displacement derivatives with tractions

a
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fx s ds = 7(] - p(x) — 27(1 —7) Uy (x,0)

b

[ p6) . n-2v) nE ‘
fx . ds = WT(X) - mlt}/,x(x,())
b

m If in contact interface we can prescribe p, u, . or 7, u,,,, then the problem

reduces to )
f ¢(X)LS =U(x)
xX—s

b
m The general solution (case 2 = b):

F) = ﬂz_,‘zf Va2 = 2 U(s) fgf

x—s 22— 2

Qﬂat frictionless punch, consider P.V.
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Three-dimensional problem

m Analogy to Flamant’s problem
m Potential functions of Boussinesq

m Boussinesq problem
concentrated normal force

m Cerruti problem
concentrated tangential force

m Displacements decay as ~ 1!

1,(x,,0) = 1-2v N
]'-//‘// - 477G y7x2+1(/2
1-v N
AX () = _—
uz(x, y,0) ypre Ny
m Stress decay as ~ 72

m Superposition principle
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Classical contact problem

m Various problems with rigid flat stamps:
circular, elliptic, frictionless, full-stick, finite —
ﬁ’iCi’iOTl MECHANICS

m Hertz theory
normal frictionless contact of elastic solids Q

E,viand z; = Aix* + B> + Cixy, i=1,2

K.L. Johnson
m Wedges (coin) and cones

m Circular inclusion in a conforming hole

Steuermann, 1939, Goodman, Keer, 1965

m Frictional indentation z ~ x"
Incremental approach Mossakovski, 1954

self-similar solution Spence, 1968, 1975
m Adhesive contact johnson etal, 1971, 1976
m Contact with layered materials (coatings)

m Elastic-plastic and viscoelastic materials

act M
and Friction

m Sliding/rolling of non-conforming bodies

Cattaneo, 1938,Mindlin, 1949,Galin, 1953,Goryacheva, 1998
Note: 1y ~ (1 -2v)/G, soif (1 = 2v7)/Gy = (1 —2v,)/G, tangential
tractions do not change normal ones
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