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What is it for?

Karma et al. Khatchaturyan et al. Casademunt et al. Du et al.

For all free boundary problems (potentially)

Phase transformations (solidification, solid states, fluid . . . )

Fluid flow (free surfaces)

Membranes (biology)

Cracks . . .
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end

Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 3 / 54



What is it for?

Advertisement

PhD A. Settefrati, 2012 on phase transformations in Ti-base alloys

start play end
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The recipe

1 Identify the order parameter(s)

2 Build the most relevant thermodynamic functional

3 Derive the evolution equations

4 Relate the parameters to physical quantities

5 Solve (this afternoon)

6 Post-process (this afternoon)
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1. What is an order parameter?
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1. What is an order parameter?

1 Introduced in the context of phase transition (not only for phase field)

Physical quantity that discriminates different physical states (gas,
liquid, solid, paramagnetic, ferromagnetic . . . )

2 Related to choice of phase diagram to display the different states

Gas/liquid [Van der Waals, 1873!]: density

Ferromagnetic/paramagnetic [Weiss, 1907]: magnetization

Order/disorder [Bragg-Williams, 1934]: order parameter

Any phase transition! [Landau, 1937]

Liquid/solid [Kirkwood & Monroe, 1941]: density

Ferroelectrics [Devonshire, 1949]: polarization

Superconductivity [Ginzbug & Landau, 1950]: density of Cooper pairs

Spinodal decomposition [Cahn-Hilliard, 1958]: concentration

Ferroelastic materials (martensite) [F. Falk, 1980]: strains
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 6 / 54



1. What is an order parameter?

1 Introduced in the context of phase transition (not only for phase field)

Physical quantity that discriminates different physical states (gas,
liquid, solid, paramagnetic, ferromagnetic . . . )

2 Related to choice of phase diagram to display the different states

Gas/liquid [Van der Waals, 1873!]: density

Ferromagnetic/paramagnetic [Weiss, 1907]: magnetization

Order/disorder [Bragg-Williams, 1934]: order parameter

Any phase transition! [Landau, 1937]

Liquid/solid [Kirkwood & Monroe, 1941]: density

Ferroelectrics [Devonshire, 1949]: polarization

Superconductivity [Ginzbug & Landau, 1950]: density of Cooper pairs

Spinodal decomposition [Cahn-Hilliard, 1958]: concentration

Ferroelastic materials (martensite) [F. Falk, 1980]: strains
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1. What is an order parameter?

1 But has been extended to some arbitrary indicator

Solidification (A. Karma, J. Dantzig, I. Steinbach, M. Plapp . . . )

Crack (A. Karma, H. Levine, I. Aranson . . . )

Membranes (Q. Du, C. Misbah . . . )

Can be compared to level-set method: phase field can be considered
as a physical regularization of the advective equation of the level-set

In that case, must recover results from sharp interface descriptions
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1. What is an order parameter?

Co-existence of two different states: the order parameter is a field
(heterogeneous)

Two visions of the problem

Either interface are sharp
(macroscopic), so discontinuities
of the field

Or diffuse, as proposed very
early by van der Waals, 1893

What is important: sharp variation localized in the interface
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2. Build the relevant thermodynamic functional
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2. Build the relevant thermodynamic functional

Same as usual macroscopic thermodynamics, with functionals rather than
functions because variables are fields (depend on space . . . and time)

Isothermal condition and cst volume: Free energy F
J.D. Van der Waals,
The thermodynamic theory of capillarity under the hypothesis of a

continous variation of density

V.L. Ginzburg, L.D. Landau,
On the theory of superconductivity

J.W. Cahn, J.F. Hilliard,
Free energy of a nonuniform system I. Interfacial free energy

Systems featuring heat conduction: entropy S
S.L. Wang, R.F. Sekerka, B. Wheeler, S. Murray, R. Corriel, G. McFadden

But other choices are in principle possible (equivalent but different
advantages)
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2. Build the relevant thermodynamic functional

Starting with the easiest model: Allen-Cahn

Oversimplified version (parameter free but unrealistic)

F(ϕ(t,x)) =

∫
V

[
ϕ4

(t,x)− ϕ2
(t,x) + |∇ϕ(t,x)|2

]
dV

Where does all these terms come from?

1 Homogeneous system ∇ϕ = 0: homogeneous free energy density

I will consider two examples
1 Starting from macroscopic point of view: van der Waals fluid
2 Upscaling from a simplified atomic picture: Molecular field of P. Weiss

2 What is this gradient term?
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 11 / 54



2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Equation of state for simple fluids: improvement wrt the ideal gas
pvm = RT by accounting for finite volume of atoms/molecules and
interactions (liquid can sustain negative pressures)

(p− a/v2m)(vm − b) = RT

Features a transition between liquid and gas below a critical point
given by ∂P/∂vm = 0 and ∂2P/∂v2m = 0
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Critical point

pc =
a

27b2

T c =
8a

27bR
vcm = 3b

Reduced form

π =
8τ

3v − 1
− 3

v2

with τ = T/T c, π = p/pc

and v = vm/v
c
m

Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 13 / 54



2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Critical point

pc =
a

27b2

T c =
8a

27bR
vcm = 3b

Reduced form

π =
8τ

3v − 1
− 3

v2

with τ = T/T c, π = p/pc

and v = vm/v
c
m

0 10 20 30
vm

−2

0

2

4

6

π
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Critical point

pc =
a

27b2

T c =
8a

27bR
vcm = 3b

Reduced form

π =
8τ

3v − 1
− 3

v2

with τ = T/T c, π = p/pc

and v = vm/v
c
m

[J. Ericksen, Equilibrium of bars, 1975]
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Free energy: integration of the law of state at constant temperature

1

RTc

∂fm
∂v

∣∣∣∣
τ

= − π

Below the critical point, fm
features a non-convex part:
corresponds to states that
cannot be observed

Liquid ↔ Gas transitions

Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 14 / 54



2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Free energy: integration of the law of state at constant temperature

1

RTc

∂fm
∂v

∣∣∣∣
τ

=
8τ

3v − 1
− 3

v2

Below the critical point, fm
features a non-convex part:
corresponds to states that
cannot be observed

Liquid ↔ Gas transitions
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Equilibrium between liquid and gas: variational calculus

Minimum of F with constant total number of atoms (constraint)
Miminize the Lagrangian L = F − λ

( ∫
V ρdV −N

)
with ρ = 1/vm

δL =

∫
V

[
δ(ρfm)− λδρ

]
dV = 0

δL

This is valid ∀ δρ
fm + ρ

∂fm
∂ρ

= λ
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 15 / 54



2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Equilibrium between liquid and gas: variational calculus

Minimum of F with constant total number of atoms (constraint)
Miminize the Lagrangian L = F − λ

( ∫
V ρdV −N

)
with ρ = 1/vm

δL =

∫
V

[
δ(ρfm)− λδρ

]
dV = 0

δL =

∫
V

[
δρ fm + ρ δfm − λδρ

]
dV = 0

This is valid ∀ δρ
fm + ρ

∂fm
∂ρ

= λ
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Equilibrium between liquid and gas: variational calculus

fm + ρ
∂fm
∂ρ

= λ

Thus, if liquid L and gas G are coexisting, they must feature the same
value for their respective Gibbs energies:

fL
m(vLm) + pLvL

m = fG
m(vGm) + pGvG

m

Moreover, more involved variational calculus considering two co-existing
liquid and gas extending over volumes V L and V G respectively would
prove that for a flat interface pL = pG.
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Equilibrium between liquid and gas: variational calculus

Maxwell rule: both phases (Gibbs energies of both phases are equal)

Amounts to find the common tangent which convexifies the free
energy
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2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Most important feature: non-convexity of free energy

Expansion with respect to the relevant order parameter φ = (vm − vcm)/vcm

π =
8τ

3φ+ 2
− 3

(1 + φ)2

π ∼ 4τ − 3 + 6(1− τ)φ

+ 9(τ − 1)φ2 + 3(4− 9/2τ)φ3

f(φ) = f0+Aφ+Bφ
2+Cφ3+Dφ4

Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 18 / 54



2. Build the relevant thermodynamic functional

1.1. Homogeneous part: Van der Waals fluid

Most important feature: non-convexity of free energy

Expansion with respect to the relevant order parameter φ = (vm − vcm)/vcm

π =
8τ

3φ+ 2
− 3

(1 + φ)2

π ∼ 4τ − 3 + 6(1− τ)φ

+ 9(τ − 1)φ2 + 3(4− 9/2τ)φ3

f(φ) = f0+Aφ+Bφ
2+Cφ3+Dφ4

0.90 0.95 1.00 1.05 1.10
v

π
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

A bit of statistical physics

In the canonical ensemble F
At equilibrium, the configurations follow the Boltzmann distribution

Pi =
1

Z exp
(
− βEi

)
Z =

∑
i

exp
(
− βEi

)
with β = 1/(kBT )

F = −kBT lnZ

Most simple model for magnetism: Ising
N atoms with spins si = ±1 interacting with nearest neighbors

H = −J
∑
〈ij〉

sisj − h
∑
i

si
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

A bit of statistical physics

Let’s consider a single atom: can display only two states with probabilities

P+ =
1

Z exp(+βh) P− =
1

Z exp(−βh)

Partition function

Z = exp(+βh) + exp(−βh)

Magnetization: average spin

m = 〈s〉 = (+1)P+ + (−1)P−
= tanh(βh)
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

Now, let’s consider N atoms: there are 2N different configurations
Hard to calculate Z and so the probability of a given configuration
(aka microstate)

Brute force: Monte Carlo with Metropolis algorithm

Mean field approximation
Reducing the N bodies problem into a problem involving a single
body in an effective field

Neglect correlations between fluctuations
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

Mean field approximation

Then, it is easy to compute the averages

E = 〈H〉 = −J
∑
〈ij〉

〈sisj〉 − h
∑
i

〈si〉

= −J
∑
〈ij〉

〈si〉〈sj〉 − h
∑
i

〈si〉 = −J Nz
2
m2 − hNm
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

Mean field approximation

Bolztmann has related entropy to combinatorics:

Simple when there is no correlation.

Indeed reduces to count how many configurations with N+

indistinguishable positive spins over the N atoms

W =

(
N

N+

)
=

N !

N+!N−!

with N+ = N(1 +m)/2 and N− = N(1−m)/2
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

Mean field approximation

Bolztmann has related entropy to combinatorics:

Stirling formula: n! ∼
√

2πnn+1/2 exp(−n) or lnn! ∼ n lnn− n
(very good for n > 10)

lnW = N lnN −N −
(
N+ lnN+ −N+ +N− lnN− −N−

)
Of course N+ +N− = N , then

lnW = −
(
N+ ln(N+/N) +N− ln(N−/N)

)
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

Mean field approximation

Bolztmann has related entropy to combinatorics:

Introducing m: N+ = N(1 +m)/2 and N− = N(1−m)/2

lnW = −N
(1 +m

2
ln

1 +m

2
+

1−m
2

ln
1−m

2

)
Find a polynomial expansion!
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field for magnetism

Mean field approximation

Bolztmann has related entropy to combinatorics:

Expanding not far from the critical point, i.e. m ∼ 0:

lnW ∼ −N
[
−ln 2+

1 +m

2

(
m−m

2

2
+
m3

3

)
+

1−m
2

(
−m−m

2

2
−m

3

3

)]

lnW ∼ −N
(
− ln 2 +

1

2
m2 +

1

12
m4
)
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field

Mean field approximation

S ∼ −kBN
(
− ln 2 +

1

2
m2 +

1

12
m4
)

−1.0 −0.5 0.0 0.5 1.0
m

0.0

0.5

S
m
/R
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2. Build the relevant thermodynamic functional

1.2. Homogeneous part: Weiss molecular field

Mean field approximation

End up with some −φ2 + φ4 potential
Indeed the free energy now reads:

nfm = F = E − TS
fm
Na

= −zJ
2
m2 − hm+ kBT

(
− ln 2 +

1

2
m2 +

1

12
m4
)

At the critical temperature ∂2fm
∂m2

∣∣
m=0

= 0, then kBTc = zJ , so that:

fm
Na

+ cste = −hm+
kB

2
(T − Tc)m2 +

kBT

12
m4
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Equivalent to the mean field approximation of Ising model

Mean field neglects fluctuations

G(r, r′) =
〈
δψ(r) δψ(r′)

〉
= 0〈

ψ(r)ψ(r′)
〉

= 〈ψ(r)〉
〈
ψ(r′)

〉
From Hamiltonian to internal energy
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

Energies of first nearest neighbors ij

Eij = −ci(1− cj)V + (1− cj)V AA + ci V
BB + (cj − ci)V AB

with V = V AA + V BB − 2V AB

Proove it (better to know what to get)

Internal energy becomes
E =
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

Energies of first nearest neighbors ij

Eij = −ci(1− cj)V + (1− cj)V AA + ci V
BB + (cj − ci)V AB

with V = V AA + V BB − 2V AB

Proove it (better to know what to get)

Internal energy becomes

E = N V AA +
(
V BB − V AA

)∑
i

ci −
1

2

∑
ij

ci (1− cj)V
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

Entropy of a random assembly (ideal solution)

S = −kB

∑
i

[
ci ln ci + (1− ci) ln(1− ci)

]
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Free energy

F = N V AA + (V BB − V AA)
∑
i
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+ kBT
∑
i

[
ci ln ci + (1− ci) ln(1− ci)

]
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2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

Entropy of a random assembly (ideal solution)

S = −kB

∑
i

[
ci ln ci + (1− ci) ln(1− ci)

]
Free energy with respect to pure A & B

∆F = kBT
∑
i

[
ci ln ci+(1−ci) ln(1−ci)

]
− 1

2

∑
ij

ci (1−cj)V
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

Entropy of a random assembly (ideal solution)

S = −kB

∑
i

[
ci ln ci + (1− ci) ln(1− ci)

]
Then the density for an homogeneous solution (i.e. ci = c ∀ i)

∆f0 = kBT
[
c ln c+ (1− c) ln(1− c)

]
− 1

2
c (1− c)V

Demixing possible for V < 0 such as
∂2

∂c2
∆f0 < 0
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

∆f0 = kBT
[
c ln c+ (1− c) ln(1− c)

]
− 1

2
c (1− c)V

with V = V AA + V BB − 2V AB < 0
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

At equilibrium
∂

∂ci
F = µ ∀ i

Using the homogeneous free energy density (do it!)

∂

∂ci
∆F =

∂

∂c
∆f0 (ci)− V ci +

∑
j

cj V = 0
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2. Build the relevant thermodynamic functional

2.1. Gradient: spinodal decomposition [Hillert 1956]

Mean field

At equilibrium (symetrical case V AA = V BB and µ = 0)

∂

∂ci
∆F = kBT ln

(
ci

1− ci

)
+
∑
j

cj V −
V

2
= 0

Using the homogeneous free energy density (do it!)

∂

∂ci
∆F =

∂

∂c
∆f0 (ci)− V ci +

∑
j

cj V = 0

∑
j (cj − ci) is the Laplacian discretized at the scale of the first

neighbors spacing: may have something to do with the gradient term
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2. Build the relevant thermodynamic functional

2.2. Gradient: spinodal decomposition by Cahn-Hilliard

Lowest order expansion (continuum limit of a mean field model with
first neighbor approximation [Hillert, 1956, 1961])

f(c,∇c,∇2c . . . ) ≈ f0(c)+
∑

i

∂f

∂
(
∂xic

)∣∣∣∣∣
c

∂xic+
∑

ij

∂f

∂
(
∂2xixjc

)∣∣∣∣∣
c

∂2xixjc

+
1

2

∑
ij

∂2f

∂
(
∂xic

)
∂
(
∂xjc

)∣∣∣∣∣
c

(
∂xic

)(
∂xjc

)
+ . . .

In an isotropic medium, f is invariant wrt xi → −xi and xi → xj

f(c,∇c,∇2c, . . . ) = f0(c) + κ1∇2c+ κ2|∇c|2
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2. Build the relevant thermodynamic functional

2.2. Gradient: spinodal decomposition by Cahn-Hilliard

The gradient terms can be gathered∫
V

[
κ1∇2c+ κ2|∇c|2

]
dV =

∫
V

[
∇ · (κ1∇c)− dκ1/dc |∇c|2 + κ2|∇c|2

]
dV

=

∫
V

(κ2 − dκ1/dc)|∇c|2dV +

∫
∂V
κ1∇c ·ndS

Generally, no prescription at the boundaries for different reasons:

Periodic boundary conditions

Surfaces can be described by diffuse interfaces

Then ∫
∂V
κ1∇c ·n dS = 0

and the gradient term involves only |∇c|2
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3. Evolution equations
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3. Evolution equations

Following usual non-equilibrium thermodynamics

Considering some “Allen-Cahn” free energy functional

F =

∫
V
ψ dV =

∫
V

[
f0(ϕ) +

α

2
|∇ϕ|2

]
dV

where ϕ is not conserved (e.g. order, magnetization. . . ) and where
f0 displays two minima separated by a non convex part

Second principle implies at cst temperature:

dF
dt

= −T Ṡi + Pext with Ṡi ≥ 0

dF
dt

=

∫
V

[
∂f0
∂ϕ

∂ϕ

∂t
+ α∇ϕ · ∇∂ϕ

∂t

]
dV
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3. Evolution equations

Following usual non-equilibrium thermodynamics

Integration by parts identifies Pext and Ṡi

∇ϕ · ∇∂ϕ
∂t

= −∂ϕ
∂t
∇ ·∇ϕ+∇ ·

(
∂ϕ

∂t
∇ϕ
)

dF
dt

=

∫
V

[
∂f0
∂ϕ

∂ϕ

∂t
− α ∂ϕ

∂t
∇ ·∇ϕ

]
dV + α

∫
S

∂ϕ

∂t
∇ϕ ·n dS

T Ṡi =

∫
V

[
−∂f0
∂ϕ

∂ϕ

∂t
+ α

∂ϕ

∂t
∆ϕ

]
dV

Pext = α

∫
S

∂ϕ

∂t
∇ϕ ·n dS

Discard subtleties of alternative routes (in part. entropy flows)
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 38 / 54



3. Evolution equations

Following usual non-equilibrium thermodynamics

Integration by parts identifies Pext and Ṡi
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3. Evolution equations

Following usual non-equilibrium thermodynamics

Dissipation T Ṡi∫
V

[
−∂f0
∂ϕ

∂ϕ

∂t
+ α

∂ϕ

∂t
∆ϕ

]
dV ≥ 0

Local dissipation T ṡi

∂ϕ

∂t

(
−∂f0
∂ϕ

+ α∆ϕ

)
≥ 0

Usual argument (linear regime) [I. Prigogine, E. Guggenheim]

ṡi = J F ≥ 0 −→ J ∝ F

ϕ̇= M

(
α∆ϕ− ∂f0

∂ϕ

)
withM > 0
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 39 / 54



3. Evolution equations

Following usual non-equilibrium thermodynamics

Dissipation T Ṡi∫
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3. Evolution equations

Following usual non-equilibrium thermodynamics

Now, let’s consider that the order parameter is a conserved quantity
(e.g. concentration c rather than ϕ)

F =

∫
V

[
f0(c) +

α

2
|∇c|2

]
dV

Second principle implies at cst temperature:

dF
dt

= −T Ṡi − T Ṡext + Pext with Ṡi ≥ 0

Supplied by the solute balance

∂c

∂t
= −∇ ·J

Diffusion does not produce any work (this is not fluid flow!) so Pext = 0
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3. Evolution equations

Following usual non-equilibrium thermodynamics

Integration by parts identifies Ṡi and Ṡext
Same as before, so I go directly to the result

T Ṡi + T Ṡext =

∫
V

[
−∂f0
∂c

+ α∆c

]
∂c

∂t
dV + α

∫
S

∂c

∂t
∇c ·n dS

The solute balance must be accounted for

T Ṡi + T Ṡext =

∫
V
µ∇ ·J dV − α

∫
S
∇ · J ∇c ·n dS

where µ = ∂f0
∂c − α∆c (generalized diffusion potential)
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3. Evolution equations

Following usual non-equilibrium thermodynamics

So we proceed to a second integration by parts

µ∇ · J = ∇ ·
(
µJ
)
− J · ∇µ

Then

T Ṡi + T Ṡext =

∫
S
µJ ·n dS −

∫
V
J · ∇µ dV − α

∫
S
∇ · J ∇c ·n dS

and we identify

T Ṡi = −
∫
V
J · ∇µ dV ≥ 0

T Ṡext =

∫
S

[
µJ − α∇ ·J ∇c

]
·n dS
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]
·n dS
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3. Evolution equations

Following usual non-equilibrium thermodynamics

The dissipation reads

T Ṡi = −
∫
V
J · ∇µ dV ≥ 0

In the linear regime

J = −L∇µ = −L∇
(
∂f0
∂c
− α∆c

)
with L > 0

Inserting the full expression of J into the solute balance gives the
famous Cahn-Hilliard equation

∂c

∂t
= ∇ ·

[
L∇

(
∂f0
∂c
− α∆c

)]
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4. Parameters
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4. Parameters

Equilibrium profile of ϕ in a simple Allen-Cahn

1D system with a flat interface perpendicular to x and

ϕ(−∞) = 1 dϕ/dx(−∞) = 0

ϕ(+∞) = 0 dϕ/dx(+∞) = 0

The equilibrium condition reads

δF = δ

∫
V

[
f0(ϕ) +

α

2
|∇ϕ|2

]
dV = 0 ⇔ α

d2ϕ

dx2
=
df0
dϕ

Integration of this ODE is elementary calculus.

Recognize that dϕ/dx is an integrating factor, the previous ODE becomes:

α
dϕ

dx

d2ϕ

dx2
=
df0
dϕ

dϕ

dx
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4. Parameters

Equilibrium profile of ϕ in a simple Allen-Cahn

Then we integrate from x = −∞ to some x:

α

2

∫
−∞

d

dx

(
dϕ

dx

)2
dx =

∫
−∞

df0
dx

dx

α

2

(
dϕ

dx

)2
= f0(ϕ(x))− f0(ϕ(−∞)) (1)

Complying with the boundary conditions (sign)√
α

2

dϕ

dx
= −

√
f0(ϕ(x))− f0(ϕ(−∞))

In the general case (f0 non-convex but cumbersome function), integrate
numerically: the profile features a sigmoidal shape (smooth step function)
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4. Parameters

Equilibrium profile of ϕ in a simple Allen-Cahn

When
f0(ϕ) = W g(ϕ) = Wϕ2(1− ϕ)2,
the sigmoidal shape can be computed
analytically and displays nice features

dϕ

dx
= −

√
2W/αϕ(1− ϕ)

0.0 0.2 0.4 0.6 0.8 1.0
ϕ

0.00

0.02

0.04

0.06

ϕ
2 (1
−
ϕ

)2

Just basic calculus

dϕ

ϕ(1− ϕ)
= −4

dx

δ
with δ = 4

√
α/(2W )

Just do it!

Hint: substitute ψ = ϕ/(1− ϕ) and use symmetry
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4. Parameters

Equilibrium profile of ϕ in a simple Allen-Cahn

dψ

ψ
= −4

dx

δ

ln

(
ψ

ψ(x=0)

)
= −4

x

δ

ϕ

1− ϕ = exp
(
− 4x/δ

)
ϕ(x) =

exp(−4x/δ)

1 + exp(−4x/δ)

ϕ(x) =
exp(−2x/δ)

exp(−2x/δ) + exp(−2x/δ)
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Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 48 / 54



4. Parameters

Equilibrium profile of ϕ in a simple Allen-Cahn

dψ

ψ
= −4

dx

δ

ln

(
ψ

ψ(x=0)

)
= −4

x

δ

ϕ

1− ϕ = exp
(
− 4x/δ

)
ϕ(x) =

exp(−4x/δ)

1 + exp(−4x/δ)

ϕ(x) =
exp(−2x/δ)

exp(−2x/δ) + exp(−2x/δ)
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4. Parameters

Interface energy in a simple Allen-Cahn

The interface energy is the excess of the relevant potential:
free energy in Allen-Cahn (f0(ϕ(−∞)) = f0(ϕ(+∞)))

γ =

∫
+∞

−∞

[
∆f0 +

α

2

∣∣∣dϕ
dx

∣∣∣2]dx
with ∆f0 = f0(ϕ(x))− f0(ϕ(−∞))

Let’s recall that at equilibrium (cf. Eq.(1)):

α

2

(
dϕ

dx

)2
= ∆f0

Thus

γ =

∫
+∞

−∞
2 ∆f0(ϕ(x)) dx =

∫
+∞

−∞
α
∣∣∣dϕ
dx

∣∣∣2dx
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4. Parameters

Interface energy in a simple Allen-Cahn

Rather than integrating wrt x, better to integrate wrt ϕ

γ =

∫
+∞

−∞
α
∣∣∣dϕ
dx

∣∣∣2 dx =

∫
+∞

−∞
α
∣∣∣dϕ
dx

∣∣∣2 dx
dϕ

dϕ =

∫ 1

0
α
∣∣∣dϕ
dx

∣∣∣ dϕ
Try!

Using again Eq.(1)

γ =

∫ 1

0

√
2α∆f0 dϕ

For f0(ϕ) = W g(ϕ) = W ϕ2(1− ϕ)2

γ =

∫ 1

0

√
2αW ϕ(1− ϕ) dϕ =

√
2αW

[ϕ2

2
− ϕ3

3

]1
0

=

√
αW

3
√

2
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4. Parameters

Allen-Cahn: equilibrium

ϕ0 =
1

2

[
1− tanh

( r
2δ

)]
δ ∝ ε√

W

γ =

∫
ε2 |∇ϕ0|2 dΩ

γ ∝ ε
√
W
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5. Solving
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4. Solving

A few words on the spectral method used this afternoon

Use Fourier transforms for periodic microstructures

Spatial differential operators become algebraic operations

Very fast algorithms for performing the transforms back and forth:
FFT [Cooley,Tukey]

Scale as N logN rather than N2

Small memory footprints: 3D!!
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4. Solving

I will not give any rigorous definitions and proofs

More like a quick and (very) dirty recipes

ϕ̂(k) =

∫
V
ϕ(x) exp

(
− ik ·x

)
d3x

ϕ(x) =
1

(2π)3

∫
K
ϕ̂(k) exp

(
+ ik ·x

)
d3k
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4. Solving

I will not give any rigorous definitions and proofs

More like a quick and (very) dirty recipes

ϕ̂(k) =

∫
V
ϕ(x) exp

(
− ik ·x

)
d3x

ϕ(x) =
1

(2π)3

∫
K
ϕ̂(k) exp

(
+ ik ·x

)
d3k

Derivative
∂̂ϕ

∂xi
= iki ϕ̂

(proof: integration by parts, considering that the functions are well behaved such that

the integrals are convergent)

Benôıt Appolaire (LEM) Master DMS B3: Phase field 2016, feb. 3rd 54 / 54



4. Solving

I will not give any rigorous definitions and proofs

More like a quick and (very) dirty recipes

ϕ̂(k) =

∫
V
ϕ(x) exp

(
− ik ·x

)
d3x

ϕ(x) =
1

(2π)3

∫
K
ϕ̂(k) exp

(
+ ik ·x

)
d3k

Derivative
∂̂ϕ

∂xi
= iki ϕ̂

(proof: integration by parts, considering that the functions are well behaved such that

the integrals are convergent)

Apply to Allen-Cahn equation
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